Some themes impact the scales when using a colour or fill along a
variable. This vignette focusses on the different styles of colour
scales. The fill scales uses the same gradients. To keep the vignette
small, we only give examples with different colours. We illustrate the
other effects of the themes in
vignette("colour", package = "INBOtheme")
, again to keep
the size of the vignettes to a minimum. Note that you need to use the
appropriate scale provided by INBOtheme
in case of a
gradient along a continuous variable.
theme_inbo()
ggplot(diamonds, aes(x = carat, y = depth, colour = price)) +
geom_point() +
scale_colour_gradient()
ggplot(diamonds, aes(x = carat, y = depth, colour = price)) +
geom_point() +
scale_colour_gradient2(midpoint = 1e4)
Here we illustrate figures with a different number of categories. We choose for scatter plots with random x, y and category. This is the most difficult situation to distinguish the colours. Be careful when you use more than 5 colours.
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:2], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:3], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:4], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:5], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:6], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:7], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:8], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
theme_vlaanderen2015()
ggplot(diamonds, aes(x = carat, y = depth, colour = price)) +
geom_point() +
scale_colour_gradient()
ggplot(diamonds, aes(x = carat, y = depth, colour = price)) +
geom_point() +
scale_colour_gradient2(midpoint = 1e4)
Here we illustrate figures with a different number of categories. We choose for scatter plots with random x, y and category. This is the most difficult situation to distinguish the colours. Be careful when you use more than 5 colours.
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:2], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:3], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:4], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:5], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:6], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:7], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:8], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
theme_elsevier()
ggplot(diamonds, aes(x = carat, y = depth, colour = price)) +
geom_point() +
scale_colour_gradient()
ggplot(diamonds, aes(x = carat, y = depth, colour = price)) +
geom_point() +
scale_colour_gradient2(midpoint = 1e4)
Here we illustrate figures with a different number of categories. We choose for scatter plots with random x, y and category. This is the most difficult situation to distinguish the colours. Be careful when you use more than 5 colours.
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:2], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:3], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:4], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:5], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:6], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:7], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()
data.frame(
x = runif(1e3), y = runif(1e3),
category = sample(LETTERS[1:8], 1e3, replace = TRUE)
) |>
ggplot(aes(x = x, y = y, colour = category)) +
geom_jitter()