Title: | Read, Explore and Visualize Camera Trap Data Packages |
---|---|
Description: | Read, explore and visualize Camera Trap Data Packages (Camtrap DP). 'Camtrap DP' (<https://camtrap-dp.tdwg.org>) is a community developed data exchange format for this type of data. With camtraptor you can read and filter data, create overviews of observed species, relative abundance or effort, and plot these data on a map. |
Authors: | Damiano Oldoni [aut, cre] , Peter Desmet [aut] , Pieter Huybrechts [aut] , Raphaël Nussbaumer [ctb] (0000-0002-8185-10205), Thierry Onkelinx [ctb] , Jim Casaer [ctb] , Lynn Pallemaerts [ctb] , Nele Mullens [ctb] , Research Institute for Nature and Forest (INBO) [cph] (https://www.vlaanderen.be/inbo/en-gb/), Research Foundation - Flanders [fnd] (https://lifewatch.be) |
Maintainer: | Damiano Oldoni <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.26.0 |
Built: | 2024-11-13 06:00:38 UTC |
Source: | https://github.com/inbo/camtraptor |
A tibble data frame with the following columns:
deploymentID
sequenceID
x
and y
: The coordinates.
imageWidth
and imageHeight
: The image dimensions.
animal_positions
animal_positions
An object of class tbl_df
(inherits from tbl
, data.frame
) with 42 rows and 6 columns.
Other sample data:
dep_calib_models
,
mica
This function is used internally by all the get_*()
functions to filter on
deployments.
apply_filter_predicate(df, verbose, ...)
apply_filter_predicate(df, verbose, ...)
df |
Data frame we want to apply filter(s) expression(s) |
verbose |
Show ( |
... |
filter predicates to apply to |
A data frame.
Other filter functions:
pred()
# and apply_filter_predicate( mica$data$deployments, verbose = TRUE, pred_gte("latitude", 51.28), pred_lt("longitude", 3.56) ) # Equivalent of apply_filter_predicate( mica$data$deployments, verbose = TRUE, pred_and( pred_gte("latitude", 51.28), pred_lt("longitude", 3.56) ) ) # or apply_filter_predicate( mica$data$deployments, verbose = TRUE, pred_or( pred_gte("latitude", 51.28), pred_lt("longitude", 3.56) ) )
# and apply_filter_predicate( mica$data$deployments, verbose = TRUE, pred_gte("latitude", 51.28), pred_lt("longitude", 3.56) ) # Equivalent of apply_filter_predicate( mica$data$deployments, verbose = TRUE, pred_and( pred_gte("latitude", 51.28), pred_lt("longitude", 3.56) ) ) # or apply_filter_predicate( mica$data$deployments, verbose = TRUE, pred_or( pred_gte("latitude", 51.28), pred_lt("longitude", 3.56) ) )
Calculates the position of animal relative to a camera based on image pixel positions and site calibration models.
calc_animal_pos( animal_pos, calib_models, dep_tag = "deploymentID", sequence_id = "sequenceID", x = "x", y = "y", image_width = "imageWidth", image_height = "imageHeight" )
calc_animal_pos( animal_pos, calib_models, dep_tag = "deploymentID", sequence_id = "sequenceID", x = "x", y = "y", image_width = "imageWidth", image_height = "imageHeight" )
animal_pos |
Data frame (tibble) of animal position digitization data.
It must contain (at least) the columns defined in args |
calib_models |
Named list of deployment calibration models or site calibration
models ( |
dep_tag |
Column in |
sequence_id |
Column in |
x |
Column in |
y |
Column in |
image_width |
Column in |
image_height |
Column in |
Original tibble data frame as passed via animal_pos
with
additional columns:
radius
: Radial distance from camera.
angle
: Angular distance from camera.
frame_count
: Indicator of the frame order within each sequence.
# Use default values calc_animal_pos(animal_positions, dep_calib_models)
# Use default values calc_animal_pos(animal_positions, dep_calib_models)
Checks if a given scientific or vernacular name(s) can be found in the
metadata (package$taxonomic
) and returns error if not.
check_species( package = NULL, species, arg_name = "species", datapkg = lifecycle::deprecated() )
check_species( package = NULL, species, arg_name = "species", datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
species |
Character vector with scientific or vernacular names. |
arg_name |
Character with argument name to return in error message Default: "species". |
datapkg |
Deprecated. Use |
A character vector with the correspondent scientific names.
# Species is a scientific name check_species(mica, "Martes foina") # Species is a vector of vernacular names check_species(mica, c("beech marten", "european polecat")) # Vernacular names can be specified in any language available check_species(mica, c("vos", "blauwe reiger")) # Vernacular names and scientific names can be mixed up check_species(mica, c("beech marten", "blauwe reiger", "Anas strepera")) # Case insensitive check_species(mica, "AnaS StrePeRa") check_species(mica, "bEEch mARteN") ## Not run: check_species(mica, "bad name") ## End(Not run)
# Species is a scientific name check_species(mica, "Martes foina") # Species is a vector of vernacular names check_species(mica, c("beech marten", "european polecat")) # Vernacular names can be specified in any language available check_species(mica, c("vos", "blauwe reiger")) # Vernacular names and scientific names can be mixed up check_species(mica, c("beech marten", "blauwe reiger", "Anas strepera")) # Case insensitive check_species(mica, "AnaS StrePeRa") check_species(mica, "bEEch mARteN") ## Not run: check_species(mica, "bad name") ## End(Not run)
A list containing a number of calibration models (calibs
) or site
calibration models (depcal
).
The deployment names are used as names.
dep_calib_models
dep_calib_models
An object of class calibs
of length 4.
Other sample data:
animal_positions
,
mica
Returns the camera operation matrix as returned by camtrapR::cameraOperation().
get_cam_op( package = NULL, ..., station_col = "locationName", camera_col = NULL, session_col = NULL, use_prefix = FALSE, datapkg = lifecycle::deprecated() )
get_cam_op( package = NULL, ..., station_col = "locationName", camera_col = NULL, session_col = NULL, use_prefix = FALSE, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
filter predicates for filtering on deployments. |
station_col |
Column name to use for identifying the stations. Default:
|
camera_col |
Column name of the column specifying Camera ID. Default:
|
session_col |
Column name to use for identifying the session. Default:
|
use_prefix |
Logical ( |
datapkg |
Deprecated. Use |
The deployment data are by default grouped by locationName
(station ID in
camtrapR jargon) or another column specified by the user via the
station_col
argument. If multiple deployments are linked to same location,
daily efforts higher than 1 occur.
Partially active days, e.g. the first or the last day of a deployment, result in decimal effort values as in camtrapR::cameraOperation().
A matrix. Row names always indicate the station ID. Column names are dates.
Other exploration functions:
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
library(dplyr) get_cam_op(mica) # Applying filter(s) on deployments, e.g. deployments with latitude >= 51.18 get_cam_op(mica, pred_gte("latitude", 51.18)) # Specify column with station names get_cam_op(mica, station_col = "locationID") # Specify column with session IDs mica_sessions <- mica mica_sessions$data$deployments <- mica_sessions$data$deployments %>% dplyr::mutate(session = ifelse( stringr::str_starts(.data$locationName, "B_DL_"), "after2020", "before2020" ) ) get_cam_op(mica_sessions, session_col = "session") # Specify column with camera IDs mica_cameras <- mica_sessions mica_cameras$data$deployments$cameraID <- c(1, 2, 3, 4) get_cam_op(mica_cameras, camera_col = "cameraID") # Specify both session and camera IDs get_cam_op(mica_cameras, camera_col = "cameraID", session_col = "session") # Use prefix Station as in camtrapR's camera operation matrix get_cam_op(mica, use_prefix = TRUE)
library(dplyr) get_cam_op(mica) # Applying filter(s) on deployments, e.g. deployments with latitude >= 51.18 get_cam_op(mica, pred_gte("latitude", 51.18)) # Specify column with station names get_cam_op(mica, station_col = "locationID") # Specify column with session IDs mica_sessions <- mica mica_sessions$data$deployments <- mica_sessions$data$deployments %>% dplyr::mutate(session = ifelse( stringr::str_starts(.data$locationName, "B_DL_"), "after2020", "before2020" ) ) get_cam_op(mica_sessions, session_col = "session") # Specify column with camera IDs mica_cameras <- mica_sessions mica_cameras$data$deployments$cameraID <- c(1, 2, 3, 4) get_cam_op(mica_cameras, camera_col = "cameraID") # Specify both session and camera IDs get_cam_op(mica_cameras, camera_col = "cameraID", session_col = "session") # Use prefix Station as in camtrapR's camera operation matrix get_cam_op(mica, use_prefix = TRUE)
Gets the effort for each deployment and a specific time interval such as day,
week, month or year. A custom time window can also be set up. This function
calls get_cam_op()
internally.
get_custom_effort( package = NULL, ..., start = NULL, end = NULL, group_by = NULL, unit = "hour", datapkg = lifecycle::deprecated() )
get_custom_effort( package = NULL, ..., start = NULL, end = NULL, group_by = NULL, unit = "hour", datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
filter predicates |
start |
Start date.
Default: |
end |
End date.
Default: |
group_by |
Character, one of |
unit |
Character, the time unit to use while returning custom effort.
One of: |
datapkg |
Deprecated.
Use |
A tibble data frame with following columns:
deploymentID
: Deployment unique identifier.
locationName
: Location name of the deployments.
begin
: Begin date of the interval the effort is calculated over.
effort
: The effort as number.
unit
: Character specifying the effort unit.
Other exploration functions:
get_cam_op()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Effort for each deployment over the entire duration of the project # (datapackage) measured in hours (default) get_custom_effort(mica) # Effort for each deployment expressed in days get_custom_effort(mica, unit = "day") # Effort for each deployment from a specific start to a specific end get_custom_effort( mica, start = as.Date("2019-12-15"), # or lubridate::as_date("2019-12-15") end = as.Date("2021-01-10") ) # Effort for each deployment at daily interval get_custom_effort( mica, group_by = "day" ) # Effort for each deployment at weekly interval get_custom_effort( mica, group_by = "week" ) # Effort for each deployment at monthly interval get_custom_effort( mica, group_by = "month" ) # Effort for each deployment at yearly interval get_custom_effort( mica, group_by = "year" ) # Applying filter(s), e.g. deployments with latitude >= 51.18, can be # combined with other arguments get_custom_effort(mica, pred_gte("latitude", 51.18), group_by = "month") # You can afterwards calculate the total effort over all deployments library(dplyr) get_custom_effort(mica, group_by = "year", unit = "day") %>% dplyr::filter(effort > 0) %>% dplyr::group_by(begin) %>% dplyr::summarise( deploymentIDs = list(deploymentID), locationNames = list(locationName), ndep = length(unique(deploymentID)), nloc = length(unique(locationName)), effort = sum(effort), unit = unique(unit) )
# Effort for each deployment over the entire duration of the project # (datapackage) measured in hours (default) get_custom_effort(mica) # Effort for each deployment expressed in days get_custom_effort(mica, unit = "day") # Effort for each deployment from a specific start to a specific end get_custom_effort( mica, start = as.Date("2019-12-15"), # or lubridate::as_date("2019-12-15") end = as.Date("2021-01-10") ) # Effort for each deployment at daily interval get_custom_effort( mica, group_by = "day" ) # Effort for each deployment at weekly interval get_custom_effort( mica, group_by = "week" ) # Effort for each deployment at monthly interval get_custom_effort( mica, group_by = "month" ) # Effort for each deployment at yearly interval get_custom_effort( mica, group_by = "year" ) # Applying filter(s), e.g. deployments with latitude >= 51.18, can be # combined with other arguments get_custom_effort(mica, pred_gte("latitude", 51.18), group_by = "month") # You can afterwards calculate the total effort over all deployments library(dplyr) get_custom_effort(mica, group_by = "year", unit = "day") %>% dplyr::filter(effort > 0) %>% dplyr::group_by(begin) %>% dplyr::summarise( deploymentIDs = list(deploymentID), locationNames = list(locationName), ndep = length(unique(deploymentID)), nloc = length(unique(locationName)), effort = sum(effort), unit = unique(unit) )
Gets the effort (deployment duration) per deployment.
get_effort( package = NULL, ..., unit = "hour", datapkg = lifecycle::deprecated() )
get_effort( package = NULL, ..., unit = "hour", datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
filter predicates |
unit |
Time unit to use while returning deployment effort (duration). One of:
|
datapkg |
Deprecated.
Use |
A tibble data frame with following columns:
deploymentID
: Deployment unique identifier.
effort
: Effort expressed in the unit passed by parameter unit
.
unit
: The unit used to express the effort.
One of the values available for parameter unit
.
effort_duration
: A duration object (duration is a class from lubridate
package).
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Efforts expressed in hours get_effort(mica) # Effort expressed as days get_effort(mica, unit = "day")
# Efforts expressed in hours get_effort(mica) # Effort expressed as days get_effort(mica, unit = "day")
Gets the number of individuals (of a subset of species) per deployment.
The number of observed individuals is stored in field count
of
observations
.
get_n_individuals( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
get_n_individuals( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
filter predicates for filtering on deployments |
species |
Character with scientific names or common names (case
insensitive).
If |
sex |
Character defining the sex class to filter on, e.g. |
life_stage |
Character vector defining the life stage class to filter
on, e.g. |
datapkg |
Deprecated.
Use |
A tibble data frame with the following columns:
deploymentID
: Deployment unique identifier.
scientificName
: Scientific name of the species.
This column is omitted if parameter species = NULL
.
n
: Number of individuals.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Get number of observations for each species get_n_individuals(mica) # Get number of obs of all species, not identified individuals as well get_n_individuals(mica, species = NULL) # Get number of observations of Anas platyrhynchos get_n_individuals(mica, species = "Anas platyrhynchos") # Get number of observations of eurasian beaver (vernacular name) get_n_individuals(mica, species = "eurasian beaver") # Mix scientific and vernacular names get_n_individuals(mica, species = c("Anas platyrhynchos", "eurasian beaver")) # Case insensitive get_n_individuals(mica, species = "AnAS PLatyrhyncHOS") get_n_individuals(mica, species = "eurasian BEAVER") # Specify life stage get_n_individuals(mica, life_stage = "adult") # Specify sex get_n_individuals(mica, sex = "female") # Specify both sex and life stage get_n_individuals(mica, sex = "unknown", life_stage = "adult") # Apply filter(s), e.g. deployments with latitude >= 51.18 get_n_individuals(mica, pred_gte("latitude", 51.18))
# Get number of observations for each species get_n_individuals(mica) # Get number of obs of all species, not identified individuals as well get_n_individuals(mica, species = NULL) # Get number of observations of Anas platyrhynchos get_n_individuals(mica, species = "Anas platyrhynchos") # Get number of observations of eurasian beaver (vernacular name) get_n_individuals(mica, species = "eurasian beaver") # Mix scientific and vernacular names get_n_individuals(mica, species = c("Anas platyrhynchos", "eurasian beaver")) # Case insensitive get_n_individuals(mica, species = "AnAS PLatyrhyncHOS") get_n_individuals(mica, species = "eurasian BEAVER") # Specify life stage get_n_individuals(mica, life_stage = "adult") # Specify sex get_n_individuals(mica, sex = "female") # Specify both sex and life stage get_n_individuals(mica, sex = "unknown", life_stage = "adult") # Apply filter(s), e.g. deployments with latitude >= 51.18 get_n_individuals(mica, pred_gte("latitude", 51.18))
Gets the number of observations (of a subset of species) per deployment.
The number of observations is defined as the number of distinct sequences
(sequenceID
).
get_n_obs( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
get_n_obs( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
Filter predicates for filtering on deployments |
species |
Character with scientific names or common names (case
insensitive).
If |
sex |
Character defining the sex class to filter on, e.g. |
life_stage |
Character vector defining the life stage class to filter
on, e.g. |
datapkg |
Deprecated.
Use |
A tibble data frame with the following columns:
deploymentID
: Deployment unique identifier.
scientificName
: Scientific name of the species.
This column is omitted if parameter species = NULL
.
n
: Number of observations.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Get number of observations for each species get_n_obs(mica) # Get number of obs of all species, not identified individuals as well get_n_obs(mica, species = NULL) # Get number of observations of Anas platyrhynchos (scientific name) get_n_obs(mica, species = "Anas platyrhynchos") # Get number of observations of eurasian beaver (vernacular names) get_n_obs(mica, species = "eurasian beaver") # Case insensitive get_n_obs(mica, species = "Anas plaTYrhYnchoS") get_n_obs(mica, species = "EUrasian beavER") # Specify life stage get_n_obs(mica, life_stage = "subadult") # Specify sex get_n_obs(mica, sex = "female") # Specify both sex and life stage get_n_obs(mica, sex = "unknown", life_stage = "adult") # Applying filter(s), e.g. deployments with latitude >= 51.18 get_n_obs(mica, pred_gte("latitude", 51.18))
# Get number of observations for each species get_n_obs(mica) # Get number of obs of all species, not identified individuals as well get_n_obs(mica, species = NULL) # Get number of observations of Anas platyrhynchos (scientific name) get_n_obs(mica, species = "Anas platyrhynchos") # Get number of observations of eurasian beaver (vernacular names) get_n_obs(mica, species = "eurasian beaver") # Case insensitive get_n_obs(mica, species = "Anas plaTYrhYnchoS") get_n_obs(mica, species = "EUrasian beavER") # Specify life stage get_n_obs(mica, life_stage = "subadult") # Specify sex get_n_obs(mica, sex = "female") # Specify both sex and life stage get_n_obs(mica, sex = "unknown", life_stage = "adult") # Applying filter(s), e.g. deployments with latitude >= 51.18 get_n_obs(mica, pred_gte("latitude", 51.18))
Gets the number of identified species per deployment.
get_n_species(package = NULL, ..., datapkg = lifecycle::deprecated())
get_n_species(package = NULL, ..., datapkg = lifecycle::deprecated())
package |
Camera trap data package object, as returned by
|
... |
Filter predicates for filtering on deployments. |
datapkg |
Deprecated.
Use |
A tibble data frame with the following columns:
deploymentID
: Deployment unique identifier.
n
: Number of observed and identified species.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Get number of species get_n_species(mica) # Get number of species for deployments with latitude >= 51.18 get_n_species(mica, pred_gte("latitude", 51.18))
# Get number of species get_n_species(mica) # Get number of species for deployments with latitude >= 51.18 get_n_species(mica, pred_gte("latitude", 51.18))
Gets the RAI (Relative Abundance Index) per deployment. The RAI is normalized
using 100 days deployment activity. In other words:
RAI = 100 * (n/effort)
where n
is the number of observations as
calculated via get_n_obs()
and effort
is the effort in days as calculated
via get_effort()
.
get_rai( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
get_rai( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
Filter predicates for filtering on deployments. |
species |
Character with scientific names or common names (case
insensitive). If |
sex |
Character defining the sex class to filter on, e.g. |
life_stage |
Character vector defining the life stage class to filter
on, e.g. |
datapkg |
Deprecated. Use |
A tibble data frame with the following columns: - deploymentID
:
Deployment unique identifier. - scientificName
: Scientific name. - rai
:
Relative abundance index.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Calculate RAI for all species get_rai(mica) # species = "all" by default, so equivalent of get_rai(mica, species = "all") # Selected species get_rai(mica, species = c("Anas platyrhynchos", "Martes foina")) # With vernacular names, even mixing languages get_rai(mica, species = c("mallard", "steenmarter")) # Mixed scientific and vernacular names get_rai(mica, species = c("Anas platyrhynchos", "steenmarter")) # Species parameter is case insensitive get_rai(mica, species = c("ANAS plAtyRhynChOS")) # Specify sex get_rai(mica, sex = "female") get_rai(mica, sex = c("female", "unknown")) # Specify life stage get_rai(mica, life_stage = "adult") get_rai(mica, life_stage = c("adult", "subadult")) # Apply filter(s): deployments with latitude >= 51.18 get_rai(mica, pred_gte("latitude", 51.18))
# Calculate RAI for all species get_rai(mica) # species = "all" by default, so equivalent of get_rai(mica, species = "all") # Selected species get_rai(mica, species = c("Anas platyrhynchos", "Martes foina")) # With vernacular names, even mixing languages get_rai(mica, species = c("mallard", "steenmarter")) # Mixed scientific and vernacular names get_rai(mica, species = c("Anas platyrhynchos", "steenmarter")) # Species parameter is case insensitive get_rai(mica, species = c("ANAS plAtyRhynChOS")) # Specify sex get_rai(mica, sex = "female") get_rai(mica, sex = c("female", "unknown")) # Specify life stage get_rai(mica, life_stage = "adult") get_rai(mica, life_stage = c("adult", "subadult")) # Apply filter(s): deployments with latitude >= 51.18 get_rai(mica, pred_gte("latitude", 51.18))
Function to get the RAI (Relative Abundance Index) per deployment based on
number of detected individuals instead of the number of observations. The RAI
is normalized using 100 days deployment activity. In other words:
RAI = 100 * (n/effort)
where n
is the number of individuals as calculated
via get_n_individuals()
and effort
is the effort in days as calculated
via get_effort()
.
get_rai_individuals( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
get_rai_individuals( package = NULL, ..., species = "all", sex = NULL, life_stage = NULL, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
Filter predicates for filtering on deployments. |
species |
Character with scientific names or common names (case
insensitive).
If |
sex |
Character defining the sex class to filter on, e.g. |
life_stage |
Character vector defining the life stage class to filter
on, e.g. |
datapkg |
Deprecated.
Use |
A tibble data frame with the following columns:
deploymentID
: Deployment unique identifier.
scientificName
: Scientific name.
rai
: Relative abundance index.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_record_table()
,
get_scientific_name()
,
get_species()
# Calculate RAI based on number of individuals get_rai_individuals(mica) # species = "all" by default, so equivalent of get_rai_individuals(mica, species = "all") # Selected species get_rai_individuals(mica, species = c("Anas platyrhynchos", "Martes foina") ) # With common names, also mixing up languages get_rai_individuals(mica, species = c("mallard", "steenmarter")) # Mixed scientific and vernacular names get_rai_individuals(mica, species = c("Anas platyrhynchos", "beech marten")) # Species parameter is case insensitive get_rai_individuals(mica, species = c("ANAS plAtyRhynChOS")) # Specify sex get_rai_individuals(mica, sex = "female") get_rai_individuals(mica, sex = c("female", "unknown")) # Specify life stage get_rai_individuals(mica, life_stage = "adult") get_rai_individuals(mica, life_stage = c("adult", "subadult")) # Apply filter(s): deployments with latitude >= 51.18 get_rai_individuals(mica, pred_gte("latitude", 51.18))
# Calculate RAI based on number of individuals get_rai_individuals(mica) # species = "all" by default, so equivalent of get_rai_individuals(mica, species = "all") # Selected species get_rai_individuals(mica, species = c("Anas platyrhynchos", "Martes foina") ) # With common names, also mixing up languages get_rai_individuals(mica, species = c("mallard", "steenmarter")) # Mixed scientific and vernacular names get_rai_individuals(mica, species = c("Anas platyrhynchos", "beech marten")) # Species parameter is case insensitive get_rai_individuals(mica, species = c("ANAS plAtyRhynChOS")) # Specify sex get_rai_individuals(mica, sex = "female") get_rai_individuals(mica, sex = c("female", "unknown")) # Specify life stage get_rai_individuals(mica, life_stage = "adult") get_rai_individuals(mica, life_stage = c("adult", "subadult")) # Apply filter(s): deployments with latitude >= 51.18 get_rai_individuals(mica, pred_gte("latitude", 51.18))
Calculates the record table from a camera trap data package and so tabulating species records. The record table is a concept developed within the camtrapR package, see this article. See also the function documentation for camtrapR::recordTable(). Note: All dates and times are expressed in UTC format.
get_record_table( package = NULL, ..., stationCol = "locationName", exclude = NULL, minDeltaTime = 0, deltaTimeComparedTo = NULL, removeDuplicateRecords = TRUE, datapkg = lifecycle::deprecated() )
get_record_table( package = NULL, ..., stationCol = "locationName", exclude = NULL, minDeltaTime = 0, deltaTimeComparedTo = NULL, removeDuplicateRecords = TRUE, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
... |
Filter predicates for filtering on deployments |
stationCol |
Character name of the column containing stations.
Default: |
exclude |
Character vector of species names (scientific names or
vernacular names) to be excluded from the record table.
Default: |
minDeltaTime |
Time difference between records of the same species at the same station to be considered independent (in minutes). Default: 0. |
deltaTimeComparedTo |
One of |
removeDuplicateRecords |
Logical. If there are several records of the same species at the same station at exactly the same time, show only one? |
datapkg |
Deprecated.
Use |
A tibble data frame containing species records and additional information about stations, date, time and further metadata, such as filenames and directories of the images (media) linked to the species records. Some more details about the columns returned:
Station
: Character, station names, as found in the deployment column
defined in parameter stationCol
.
Species
: Character, the scientific name of the observed species.
DateTimeOriginal
: Datetime object, as found in column timestamp
of
observations
, in UTC format.
Date
: Date object, the date part of DateTimeOriginal
, in UTC format.
Time
: Character, the time part of DateTimeOriginal
in UTC format.
delta.time.secs
: Numeric, the duration in seconds from the previous
independent record of a given species at a certain location.
delta.time.mins
: Numeric, the duration in minutes from the previous
independent record of a given species at a certain location.
delta.time.hours
: Numeric, the duration in hours from the previous
independent record of a given species at a certain location.
delta.time.days
: Numeric, the duration in days from the previous
independent record of a given species at a certain location.
Directory
: List, file paths of the images linked to the given record,
as defined in column filePath
of media
.
Filename
: List, file names of the images linked to the given record,
as defined in column fileName
of media
.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_scientific_name()
,
get_species()
get_record_table(mica) # Set a minDeltaTime of 20 minutes from last independent record for filtering # out not independent observations mica_dependent <- mica mica_dependent$data$observations[4,"timestamp"] <- lubridate::as_datetime("2020-07-29 05:55:00") get_record_table( mica_dependent, minDeltaTime = 20, deltaTimeComparedTo = "lastIndependentRecord" ) # Set a minDeltaTime of 20 minutes from last record for filtering out not # independent observations get_record_table( mica_dependent, minDeltaTime = 20, deltaTimeComparedTo = "lastRecord" ) # Exclude observations of mallard # Exclude is case insensitive and vernacular names are allowed get_record_table(mica, exclude = "wilde eend") # Specify column to pass station names get_record_table( mica, stationCol = "locationID", minDeltaTime = 20, deltaTimeComparedTo = "lastRecord" ) # How to deal with duplicates mica_dup <- mica # create a duplicate at 2020-07-29 05:46:48, location: B_DL_val 5_beek kleine vijver mica_dup$data$observations[4,"sequenceID"] <- mica_dup$data$observations$sequenceID[3] mica_dup$data$observations[4, "deploymentID"] <- mica_dup$data$observations$deploymentID[3] mica_dup$data$observations[4, "timestamp"] <- mica_dup$data$observations$timestamp[3] # duplicates are removed by default by get_record_table() get_record_table(mica_dup) # duplicate not removed get_record_table(mica_dup, removeDuplicateRecords = FALSE) # Applying filter(s) on deployments, e.g. deployments with latitude >= 51.18 get_record_table(mica, pred_gte("latitude", 51.18))
get_record_table(mica) # Set a minDeltaTime of 20 minutes from last independent record for filtering # out not independent observations mica_dependent <- mica mica_dependent$data$observations[4,"timestamp"] <- lubridate::as_datetime("2020-07-29 05:55:00") get_record_table( mica_dependent, minDeltaTime = 20, deltaTimeComparedTo = "lastIndependentRecord" ) # Set a minDeltaTime of 20 minutes from last record for filtering out not # independent observations get_record_table( mica_dependent, minDeltaTime = 20, deltaTimeComparedTo = "lastRecord" ) # Exclude observations of mallard # Exclude is case insensitive and vernacular names are allowed get_record_table(mica, exclude = "wilde eend") # Specify column to pass station names get_record_table( mica, stationCol = "locationID", minDeltaTime = 20, deltaTimeComparedTo = "lastRecord" ) # How to deal with duplicates mica_dup <- mica # create a duplicate at 2020-07-29 05:46:48, location: B_DL_val 5_beek kleine vijver mica_dup$data$observations[4,"sequenceID"] <- mica_dup$data$observations$sequenceID[3] mica_dup$data$observations[4, "deploymentID"] <- mica_dup$data$observations$deploymentID[3] mica_dup$data$observations[4, "timestamp"] <- mica_dup$data$observations$timestamp[3] # duplicates are removed by default by get_record_table() get_record_table(mica_dup) # duplicate not removed get_record_table(mica_dup, removeDuplicateRecords = FALSE) # Applying filter(s) on deployments, e.g. deployments with latitude >= 51.18 get_record_table(mica, pred_gte("latitude", 51.18))
Gets the scientific name for one or more vernacular names based on the
taxonomic information found in the metadata (package$taxonomic
).
The match is performed case insensitively.
If a vernacular name is not valid, an error is returned
get_scientific_name( package = NULL, vernacular_name, datapkg = lifecycle::deprecated() )
get_scientific_name( package = NULL, vernacular_name, datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
vernacular_name |
Character vector with input vernacular name(s). |
datapkg |
Deprecated.
Use |
Character vector of scientific name(s).
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_species()
# One or more vernacular names get_scientific_name(mica, "beech marten") get_scientific_name(mica, c("beech marten", "mallard")) # Vernacular names can be passed in different languages get_scientific_name(mica, c("beech marten", "wilde eend")) # Search is performed case insensitively get_scientific_name(mica, c("MaLLarD")) ## Not run: # An error is returned if at least one invalid vernacular name is passed get_scientfic_name(mica, "this is a bad vernacular name") # A scientific name is an invalid vernacular name of course get_scientific_name(mica, c("Castor fiber", "wilde eend")) ## End(Not run)
# One or more vernacular names get_scientific_name(mica, "beech marten") get_scientific_name(mica, c("beech marten", "mallard")) # Vernacular names can be passed in different languages get_scientific_name(mica, c("beech marten", "wilde eend")) # Search is performed case insensitively get_scientific_name(mica, c("MaLLarD")) ## Not run: # An error is returned if at least one invalid vernacular name is passed get_scientfic_name(mica, "this is a bad vernacular name") # A scientific name is an invalid vernacular name of course get_scientific_name(mica, c("Castor fiber", "wilde eend")) ## End(Not run)
Gets all identified species.
get_species(package = NULL, datapkg = lifecycle::deprecated())
get_species(package = NULL, datapkg = lifecycle::deprecated())
package |
Camera trap data package object, as returned by
|
datapkg |
Deprecated.
Use |
A tibble data frame with all scientific names and vernacular names of the identified species.
Other exploration functions:
get_cam_op()
,
get_custom_effort()
,
get_effort()
,
get_n_individuals()
,
get_n_obs()
,
get_n_species()
,
get_rai()
,
get_rai_individuals()
,
get_record_table()
,
get_scientific_name()
get_species(mica)
get_species(mica)
This function visualizes deployments features such as number of detected species, number of observations and RAI on a dynamic map. The circle size and colour are proportional to the mapped feature. Deployments without observations are shown as gray circles and a message is returned.
map_dep( package = NULL, feature, ..., species = NULL, sex = NULL, life_stage = NULL, effort_unit = NULL, cluster = TRUE, hover_columns = c("n", "species", "deploymentID", "locationID", "locationName", "latitude", "longitude", "start", "end"), palette = "inferno", zero_values_show = TRUE, zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/000000/multiply.png", zero_values_icon_size = 10, na_values_show = TRUE, na_values_icon_url = "https://img.icons8.com/ios-glyphs/30/FA5252/multiply.png", na_values_icon_size = 10, relative_scale = TRUE, max_scale = NULL, radius_range = c(10, 50), datapkg = lifecycle::deprecated() )
map_dep( package = NULL, feature, ..., species = NULL, sex = NULL, life_stage = NULL, effort_unit = NULL, cluster = TRUE, hover_columns = c("n", "species", "deploymentID", "locationID", "locationName", "latitude", "longitude", "start", "end"), palette = "inferno", zero_values_show = TRUE, zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/000000/multiply.png", zero_values_icon_size = 10, na_values_show = TRUE, na_values_icon_url = "https://img.icons8.com/ios-glyphs/30/FA5252/multiply.png", na_values_icon_size = 10, relative_scale = TRUE, max_scale = NULL, radius_range = c(10, 50), datapkg = lifecycle::deprecated() )
package |
Camera trap data package object, as returned by
|
feature |
Deployment feature to visualize. One of:
|
... |
Filter predicates for subsetting deployments. |
species |
Character with a scientific name.
Required for |
sex |
Character defining the sex class to filter on, e.g. |
life_stage |
Character vector defining the life stage class to filter
on, e.g. |
effort_unit |
Time unit to use while visualizing deployment effort (duration). One of:
|
cluster |
Logical value indicating whether using the cluster option
while visualizing maps.
Default: |
hover_columns |
Character vector with the name of the columns to use for
showing location deployment information on mouse hover.
One or more from deployment columns.
Use
See the Deployment section of Camtrap DP for the full list of columns you can use. |
palette |
The palette name or the colour function that values will be mapped to. Typically one of the following:
|
zero_values_show |
Logical indicating whether to show deployments with
zero values.
Default: |
zero_values_icon_url |
Character with URL to icon for showing
deployments with zero values.
Default: a cross (multiply symbol)
|
zero_values_icon_size |
A number to set the size of the icon to show deployments with zero values. Default: 10. |
na_values_show |
Logical indicating whether to show deployments with
zero values. Notice that only feature |
na_values_icon_url |
Character with URL to icon for showing
deployments with |
na_values_icon_size |
A number to set the size of the icon to show
deployments with |
relative_scale |
Logical indicating whether to use a relative colour
and radius scale ( |
max_scale |
Number indicating the max value used to map colour and radius. |
radius_range |
Vector of length 2 containing the lower and upper limit
of the circle radius.
The lower value is used for deployments with zero feature value, i.e. no
observations, no identified species, zero RAI or zero effort.
The upper value is used for the deployment(s) with the highest feature
value ( |
datapkg |
Deprecated.
Use |
Leaflet map.
Check documentation about filter predicates: pred()
, pred_in()
,
pred_and()
, ...
## Not run: # Show number of species map_dep( mica, "n_species" ) # Show number of observations (observations of unidentified species included # if any) map_dep( mica, "n_obs" ) # Show number of observations of Anas platyrhynchos map_dep( mica, "n_obs", species = "Anas platyrhynchos" ) # Show number of observations of subadult individuals of Anas strepera map_dep( mica, "n_obs", species = "Anas strepera", life_stage = "subadult" ) # Show number of observations of female or unknown individuals of gadwall map_dep( mica, "n_obs", species = "gadwall", sex = c("female", "unknown") ) # Show number of individuals (individuals of unidentified species included if # any) map_dep( mica, "n_individuals" ) # Same filters by life stage and sex as for number of observations apply map_dep( mica, "n_individuals", species = "Anas strepera", sex = "female", life_stage = "adult" ) # Show RAI map_dep( mica, "rai", species = "Anas strepera" ) # Same filters by life_stage and sex as for number of observations apply map_dep( mica, "rai", species = "Anas strepera", sex = "female", life_stage = "adult" ) # Show RAI calculated by using number of detected individuals map_dep( mica, "rai_individuals", species = "Anas strepera" ) # Same filters by life stage and sex as for basic RAI apply map_dep( mica, "rai_individuals", species = "Anas strepera", sex = "female", life_stage = "adult" ) # Show effort (hours) map_dep( mica, "effort" ) # Show effort (days) map_dep( mica, "effort", effort_unit = "day" ) # Use viridis palette (viridis palettes) map_dep( mica, "n_obs", palette = "viridis" ) # Use "BuPu" colour palette (RColorBrewer palettes) map_dep( mica, "n_obs", palette = "BuPu" ) # Use a palette defined by colour names map_dep( mica, "n_obs", palette = c("black", "blue", "white") ) # Use a palette defined by hex colours map_dep( mica, "n_obs", palette = c("#000000", "#0000FF", "#FFFFFF") ) # Do not show deployments with zero values map_dep( mica, "n_obs", life_stage = "subadult", zero_values_show = FALSE ) # Use same icon but but a non default colour for zero values deployments, # e.g. red (hex: E74C3C) map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/E74C3C/multiply.png" ) # ... or yellow (F1C40F) map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/F1C40F/multiply.png" ) # Use another icon via a different URL, e.g. the character Fry from Futurama # in green (2ECC71) map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/2ECC71/futurama-fry.png" ) # Same behavior for the icon visualizing NA values (`"n_species"` feature) unknown_species_vs_no_obs <- mica unknown_species_vs_no_obs$data$observations <- unknown_species_vs_no_obs$data$observations %>% # a deployment has detected only unknown species filter(is.na(.data$scientificName) | .data$scientificName != "Homo sapiens") %>% # a deployment has no observations filter(deploymentID != "62c200a9-0e03-4495-bcd8-032944f6f5a1") # create new map map_dep( unknown_species_vs_no_obs, feature = "n_species", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/2ECC71/futurama-fry.png", zero_values_icon_size = 60, na_values_icon_url = "https://img.icons8.com/ios-glyphs/30/E74C3C/futurama-fry.png", na_values_icon_size = 60 ) # Set size of the icon for zero values deployments map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_size = 30 ) # Disable cluster map_dep( mica, "n_species", cluster = FALSE ) # Show only number of observations and location name while hovering map_dep( mica, "n_obs", hover_columns = c("locationName", "n") ) # Use absolute scale for colours and radius map_dep(mica, "n_species", relative_scale = FALSE, max_scale = 4 ) # Change max and min size circles map_dep( mica, "n_obs", radius_range = c(40, 150) ) ## End(Not run)
## Not run: # Show number of species map_dep( mica, "n_species" ) # Show number of observations (observations of unidentified species included # if any) map_dep( mica, "n_obs" ) # Show number of observations of Anas platyrhynchos map_dep( mica, "n_obs", species = "Anas platyrhynchos" ) # Show number of observations of subadult individuals of Anas strepera map_dep( mica, "n_obs", species = "Anas strepera", life_stage = "subadult" ) # Show number of observations of female or unknown individuals of gadwall map_dep( mica, "n_obs", species = "gadwall", sex = c("female", "unknown") ) # Show number of individuals (individuals of unidentified species included if # any) map_dep( mica, "n_individuals" ) # Same filters by life stage and sex as for number of observations apply map_dep( mica, "n_individuals", species = "Anas strepera", sex = "female", life_stage = "adult" ) # Show RAI map_dep( mica, "rai", species = "Anas strepera" ) # Same filters by life_stage and sex as for number of observations apply map_dep( mica, "rai", species = "Anas strepera", sex = "female", life_stage = "adult" ) # Show RAI calculated by using number of detected individuals map_dep( mica, "rai_individuals", species = "Anas strepera" ) # Same filters by life stage and sex as for basic RAI apply map_dep( mica, "rai_individuals", species = "Anas strepera", sex = "female", life_stage = "adult" ) # Show effort (hours) map_dep( mica, "effort" ) # Show effort (days) map_dep( mica, "effort", effort_unit = "day" ) # Use viridis palette (viridis palettes) map_dep( mica, "n_obs", palette = "viridis" ) # Use "BuPu" colour palette (RColorBrewer palettes) map_dep( mica, "n_obs", palette = "BuPu" ) # Use a palette defined by colour names map_dep( mica, "n_obs", palette = c("black", "blue", "white") ) # Use a palette defined by hex colours map_dep( mica, "n_obs", palette = c("#000000", "#0000FF", "#FFFFFF") ) # Do not show deployments with zero values map_dep( mica, "n_obs", life_stage = "subadult", zero_values_show = FALSE ) # Use same icon but but a non default colour for zero values deployments, # e.g. red (hex: E74C3C) map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/E74C3C/multiply.png" ) # ... or yellow (F1C40F) map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/F1C40F/multiply.png" ) # Use another icon via a different URL, e.g. the character Fry from Futurama # in green (2ECC71) map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/2ECC71/futurama-fry.png" ) # Same behavior for the icon visualizing NA values (`"n_species"` feature) unknown_species_vs_no_obs <- mica unknown_species_vs_no_obs$data$observations <- unknown_species_vs_no_obs$data$observations %>% # a deployment has detected only unknown species filter(is.na(.data$scientificName) | .data$scientificName != "Homo sapiens") %>% # a deployment has no observations filter(deploymentID != "62c200a9-0e03-4495-bcd8-032944f6f5a1") # create new map map_dep( unknown_species_vs_no_obs, feature = "n_species", zero_values_icon_url = "https://img.icons8.com/ios-glyphs/30/2ECC71/futurama-fry.png", zero_values_icon_size = 60, na_values_icon_url = "https://img.icons8.com/ios-glyphs/30/E74C3C/futurama-fry.png", na_values_icon_size = 60 ) # Set size of the icon for zero values deployments map_dep( mica, "n_obs", life_stage = "subadult", zero_values_icon_size = 30 ) # Disable cluster map_dep( mica, "n_species", cluster = FALSE ) # Show only number of observations and location name while hovering map_dep( mica, "n_obs", hover_columns = c("locationName", "n") ) # Use absolute scale for colours and radius map_dep(mica, "n_species", relative_scale = FALSE, max_scale = 4 ) # Change max and min size circles map_dep( mica, "n_obs", radius_range = c(40, 150) ) ## End(Not run)
A sample Camera Trap Data Package as
read by read_camtrap_dp()
.
The source data are derived from the Camtrap DP example dataset
and are saved in inst/extdata/mica
.
mica
mica
An object of class datapackage
(inherits from list
) of length 16.
A larger dataset is available in inst/extdata/mica_zenodo_5590881
.
It is derived from a dataset on Zenodo,
but excludes media.csv
.
https://github.com/tdwg/camtrap-dp/tree/ad0278ef86ef518dacfb306c598dce97667cfb81/example
Other sample data:
animal_positions
,
dep_calib_models
## Not run: # mica.rda was created with the code below. mica <- read_camtrap_dp( system.file( "extdata/mica", "datapackage.json", package = "camtraptor" ) ) save(mica, file = "data/mica.rda") ## End(Not run)
## Not run: # mica.rda was created with the code below. mica <- read_camtrap_dp( system.file( "extdata/mica", "datapackage.json", package = "camtraptor" ) ) save(mica, file = "data/mica.rda") ## End(Not run)
Filter predicate
pred(arg, value) pred_not(arg, value) pred_gt(arg, value) pred_gte(arg, value) pred_lt(arg, value) pred_lte(arg, value) pred_in(arg, value) pred_notin(arg, value) pred_na(arg) pred_notna(arg) pred_and(...) pred_or(...)
pred(arg, value) pred_not(arg, value) pred_gt(arg, value) pred_gte(arg, value) pred_lt(arg, value) pred_lte(arg, value) pred_in(arg, value) pred_notin(arg, value) pred_na(arg) pred_notna(arg) pred_and(...) pred_or(...)
arg |
(character) The key for the predicate. See "Keys" below. |
value |
(various) The value for the predicate. |
... |
For |
A predicate object. An object of class predicate is a list with the following elements:
arg
: A (list of) character with all arguments in the predicate(s).
value
: A (list of) character with all values in the predicate(s).
type
: A (list of) character with all predicate types, see section
"predicate methods" here below.
expr
: A character: body of a filter expression.
pred*
functions are named for the 'type' of operation they do, inspired by
GBIF occurrence predicates
The following functions take one key and one value and are associated to the following types:
pred
: equals
pred_not
: notEquals
pred_lt
: lessThan
pred_lte
: lessThanOrEquals
pred_gt
: greaterThan
pred_gte
: greaterThanOrEquals
pred_like
: like (NOT IMPLEMENTED YET!)
The following function is only for geospatial queries, and only accepts a WKT string:
pred_within
: within (NOT IMPLEMENTED YET!)
The following functions are only for stating that you do (not) want a key to
be NA
, so only accepts one key:
pred_na
: isNA
pred_notna
: isNotNA
The following two functions accept multiple individual filter predicates, separating them by either "and" or "or":
pred_and
: and
pred_or
: or
The following function is special in that it accepts a single key but many values, stating that you want to search for all the listed values, e.g. one of the locations in: "B_ML_val 05_molenkreek", "B_ML_val 03_De Val" and "B_ML_val 06_Oostpolderkreek"
pred_in
: in
pred_notin
: notIn
Internally, the input to pred*
functions turn into a character string,
which forms the body of a filter expression.
For example:
pred("tags", "boven de stroom")
gives:
$arg [1] "tags" $value [1] "boven de stroom" $type [1] "equals" $expr (tags == "boven de stroom")
pred_gt("latitude", 51.27)
gives, (only expr
element shown):
(latitude > 51.27)
pred_or()
gives:
((tags == "boven de stroom") | (latitude > 51.28))
pred_or()
gives:
((tags == "boven de stroom") & (latitude > 51.28))
Acceptable arguments to the key
parameter are the column names of the
data frame you are applying the filter predicates.
Other filter functions:
apply_filter_predicate()
# One arg one value predicates pred("scientificName", "Anas platyrhynchos") pred("tags", "boven de stroom") pred_gt("latitude", 51.18) pred_gte("latitude", 51.18) pred_lt("longitude", 3.95) pred_lte("longitude", 3.95) pred_not("locationName", "B_DL_val 3_dikke boom") # and/or predicates pred_and(pred_lt("longitude", 3.59), pred_gt("latitude", 51.28)) pred_or(pred_gte("count", 2), pred("vernacular_name", "Norway Rat")) # Use dates as argument start_date <- as.Date("2020-06-03", format = "%Y-%m-%d") end_date <- as.Date("2020-06-10", format = "%Y-%m-%d") pred_or(pred_gte("start", start_date), pred_lte("end", end_date)) # Use datetimes (POSIXct) as argument start_date <- lubridate::as_datetime("2020-06-03") end_date <- lubridate::as_datetime("2020-06-10") pred_or(pred_gte("start", start_date), pred_lte("end", end_date)) # One arg multiple values predicates locations <- c("B_ML_val 03_De Val", "B_ML_val 05_molenkreek") pred_in("location_name", locations) pred_notin("location_name", locations) start_dates <- lubridate::as_datetime(c("2020-06-03 20:10:18", "2020-06-03 20:04:33")) pred_in("start", start_dates) pred_notin("start", start_dates) # One arg, no value predicates pred_na("scientificName") pred_notna("scientificName")
# One arg one value predicates pred("scientificName", "Anas platyrhynchos") pred("tags", "boven de stroom") pred_gt("latitude", 51.18) pred_gte("latitude", 51.18) pred_lt("longitude", 3.95) pred_lte("longitude", 3.95) pred_not("locationName", "B_DL_val 3_dikke boom") # and/or predicates pred_and(pred_lt("longitude", 3.59), pred_gt("latitude", 51.28)) pred_or(pred_gte("count", 2), pred("vernacular_name", "Norway Rat")) # Use dates as argument start_date <- as.Date("2020-06-03", format = "%Y-%m-%d") end_date <- as.Date("2020-06-10", format = "%Y-%m-%d") pred_or(pred_gte("start", start_date), pred_lte("end", end_date)) # Use datetimes (POSIXct) as argument start_date <- lubridate::as_datetime("2020-06-03") end_date <- lubridate::as_datetime("2020-06-10") pred_or(pred_gte("start", start_date), pred_lte("end", end_date)) # One arg multiple values predicates locations <- c("B_ML_val 03_De Val", "B_ML_val 05_molenkreek") pred_in("location_name", locations) pred_notin("location_name", locations) start_dates <- lubridate::as_datetime(c("2020-06-03 20:10:18", "2020-06-03 20:04:33")) pred_in("start", start_dates) pred_notin("start", start_dates) # One arg, no value predicates pred_na("scientificName") pred_notna("scientificName")
Reads files from a Camera Trap Data Package into memory.
All datetime information is automatically transformed to Coordinated
Universal Time (UTC).
Vernacular names found in the metadata (package$taxonomic
) are added to the
observations
data frame.
read_camtrap_dp(file = NULL, media = TRUE, path = lifecycle::deprecated())
read_camtrap_dp(file = NULL, media = TRUE, path = lifecycle::deprecated())
file |
Path or URL to a |
media |
If |
path |
Path to the directory containing the datapackage. Use |
List describing a Data Package (as returned by
frictionless::read_package()
) containing the original metadata, as well
as a property data
containing the data as three data frames:
deployments
media
observations
Other read functions:
read_wi()
## Not run: # Read Camtrap DP package camtrap_dp_file <- system.file( "extdata", "mica", "datapackage.json", package = "camtraptor" ) muskrat_coypu <- read_camtrap_dp(camtrap_dp_file) # Read Camtrap DP package and ignore media file muskrat_coypu <- read_camtrap_dp(camtrap_dp_file, media = FALSE) # If parsing issues while reading deployments, observations or media arise, # use readr::problems() camtrap_dp_file_with_issues <- system.file( "extdata", "mica_parsing_issues", "datapackage_for_parsing_issues.json", package = "camtraptor" ) muskrat_coypu_with_issues <- read_camtrap_dp(camtrap_dp_file_with_issues, media = TRUE) readr::problems(muskrat_coypu_with_issues$data$deployments) readr::problems(muskrat_coypu_with_issues$data$observations) readr::problems(muskrat_coypu_with_issues$data$media) ## End(Not run)
## Not run: # Read Camtrap DP package camtrap_dp_file <- system.file( "extdata", "mica", "datapackage.json", package = "camtraptor" ) muskrat_coypu <- read_camtrap_dp(camtrap_dp_file) # Read Camtrap DP package and ignore media file muskrat_coypu <- read_camtrap_dp(camtrap_dp_file, media = FALSE) # If parsing issues while reading deployments, observations or media arise, # use readr::problems() camtrap_dp_file_with_issues <- system.file( "extdata", "mica_parsing_issues", "datapackage_for_parsing_issues.json", package = "camtraptor" ) muskrat_coypu_with_issues <- read_camtrap_dp(camtrap_dp_file_with_issues, media = TRUE) readr::problems(muskrat_coypu_with_issues$data$deployments) readr::problems(muskrat_coypu_with_issues$data$observations) readr::problems(muskrat_coypu_with_issues$data$media) ## End(Not run)
Reads files from an unzipped Wildlife Insights export into memory.
Data can be exported from Wildlife Insights as a public or
private
download.
The function transforms data and metadata to a Camera Trap Data Package which can be written to file with
frictionless::write_package()
.
read_wi(directory = ".")
read_wi(directory = ".")
directory |
Path to local directory to read files from.
The function expects |
The function has only been tested on image-based projects.
CSV (data) files written to disk.
Other read functions:
read_camtrap_dp()
Rounds deployment coordinates to a certain number of digits to fuzzy/generalize camera trap locations. This function can be used before publishing data in order to protect sensitive species and/or prevent theft of active cameras.
round_coordinates(package, digits = 3)
round_coordinates(package, digits = 3)
package |
A Camtrap DP, as read by |
digits |
Number of decimal places to round coordinates to ( |
package
with rounded coordinates as well as updated
coordinateUncertainty
.(in deployments) and coordinatePrecision
(in
metadata).
Rounding coordinates is a recommended method to generalize sensitive biodiversity information (see Section 4.2 in Chapman 2020). Choose a number of digits that aligns with the sensitivity of the data and notice the effect on precision and uncertainty. Publish the coordinates as is (i.e. do not use this function) if the data are not sensitive.
sensitivity | digits | coordinatePrecision | coordinateUncertainty |
high | 1 | 0.1 | original uncertainty + 15691 m |
medium | 2 | 0.01 | original uncertainty + 1570 m |
low | 3 | 0.001 | original uncertainty + 157 m |
For records with coordinateUncertainty = NA
the function will assume the
coordinates were obtained by GPS and use 30 m
as original uncertainty,
before adding uncertainty caused by rounding.
The added uncertainty is the largest possible value caused by rounding (see
Table 3 in
Chapman & Wieczorek 2020).
Other publication functions:
write_dwc()
,
write_eml()
# Round coordinates of example package to 3 digits mica <- round_coordinates(mica, 3) # coordinatePrecision is set in metadata mica$coordinatePrecision # coordinateUncertainty is set in data: original uncertainty (or 30) + 157 m mica$data$deployments$coordinateUncertainty
# Round coordinates of example package to 3 digits mica <- round_coordinates(mica, 3) # coordinatePrecision is set in metadata mica$coordinatePrecision # coordinateUncertainty is set in data: original uncertainty (or 30) + 157 m mica$data$deployments$coordinateUncertainty
Transforms data from a Camera Trap Data Package to Darwin Core.
The resulting CSV files can be uploaded to an IPT for publication to GBIF.
A meta.xml
file is included as well.
See write_eml()
to create an eml.xml
file.
write_dwc(package, directory = ".")
write_dwc(package, directory = ".")
package |
A Camtrap DP, as read by |
directory |
Path to local directory to write file(s) to.
If |
CSV and meta.xml
files written to disk or a list of data
frames when directory = NULL
.
Data are transformed into an Occurrence core and Audubon Media Description extension. This follows recommendations discussed and created by Peter Desmet, John Wieczorek, Lien Reyserhove, Ben Norton and others.
The following terms are set from the package
metadata:
datasetName: Title as provided in package$title
.
datasetID: Identifier as provided in package$id
.
Can be a DOI.
rightsHolder: Rights holder as provided in package$rightsHolder
.
collectionCode: Platform name as provided in package$platform$title
.
license: License with scope data
as provided in package$licenses
.
rights for media files: License with scope media
as provided in
package$licenses
.
dwc:dataGeneralizations: "coordinates rounded to
package$coordinatePrecision
degree".
coordinatePrecision: package$coordinatePrecision
(e.g. 0.001
).
Key features of the Darwin Core transformation:
Deployments (of camera traps) are parent events, with observations
(machine observations) as child events. No information about the parent
event is provided other than its ID, meaning that data can be expressed in
an Occurrence Core with one row per observation and parentEventID
shared
by all occurrences in a deployment.
Sequence-based observations share an eventID
per sequence, image-based
observations share an eventID
per image.
The image(s) an observation is based on are provided in the Audubon Media Description extension, with a foreign key to the observation.
Excluded are records that document blank or unclassified media, vehicles and observations of humans.
Other publication functions:
round_coordinates()
,
write_eml()
Transforms the metadata of a Camera Trap Data Package to an EML file that can be uploaded to a GBIF IPT for publication.
write_eml( package, directory = ".", title = package$title, description = package$description, creators = NULL, keywords = c("camera traps") )
write_eml( package, directory = ".", title = package$title, description = package$description, creators = NULL, keywords = c("camera traps") )
package |
A Camtrap DP, as read by |
directory |
Path to local directory to write file to.
If |
title |
Dataset title. |
description |
Dataset description. Will be added after an automatically generated paragraph. Multiple paragraphs can be provided as a character vector. |
creators |
Dataset creators
|
keywords |
Dataset keywords. |
eml.xml
file written to disk or EML
object when
directory = NULL
.
Metadata is derived from what is provided in package
and in the function
parameters.
The following properties are set:
title: Title as provided in title
or package$title
.
description: Description as provided in description
or
package$description
.
The description is preceded by an automatically generated paragraph
describing from which project and platform the dataset is derived, and
to which extend coordinates are rounded (package$coordinatePrecision
).
license: License with scope data
as provided in package$licenses
.
creators: Contributors (all roles) as provided in
package$contributors
, filtered/reordered based on creators
.
contact: First creator.
metadata provider: First creator.
keywords: Keywords as provided in keywords
.
associated parties: Organizations as provided in
package$organizations
.
geographic coverage: Bounding box as provided in package$spatial
.
taxonomic coverage: Species (no other ranks) as provided in
package$taxonomic
.
temporal coverage: Date range as provided in package$temporal
.
project data: Title, acronym as identifier, description, and sampling
design as provided in package$project
.
The first creator is set as project personnel.
alternative identifier: Identifier as provided in package$id
.
If this is a DOI, no new DOI will be created when publishing to GBIF.
external link: URL of the project as provided in
package$project$path
.
To be set manually in the GBIF IPT: type, subtype, update frequency and publishing organization.
Not set: sampling methods and citations.
Not applicable: collection data.
Other publication functions:
round_coordinates()
,
write_dwc()