Package: inbodb (via r-universe)

August 22, 2024
Title Connect to and Retrieve Data from Databases on the INBO Server
Version 0.0.6

Description A bundle of functions to connect to and retrieve data from
databases on the INBO server, with dedicated functions to query
some of these databases.

License GPL-3
URL https://github.com/inbo/inbodb, https://inbo.github.io/inbodb/

BugReports https://github.com/inbo/inbodb/issues
Imports assertthat, DBI, dplyr, glue, lifecycle, methods, odbc, rlang
Suggests dbplyr, ggplot2, kableExtra, knitr, rmarkdown, sf, tidyr
VignetteBuilder knitr

Config/checklist/communities inbo
Config/checklist/keywords sql; databases; queries

Encoding UTF-8

Language en-GB

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://inbo.r-universe.dev

RemoteUrl https://github.com/inbo/inbodb

RemoteRef HEAD

RemoteSha ced4643b25deb66c08e1d47e4631fd65058c6350

Contents

connect_inbo_dbase L. e e
dbDisconnect,OdbcConnection-method
dbFetch,OdbcResult-method
get_florabank_observations oL

https://github.com/inbo/inbodb
https://inbo.github.io/inbodb/
https://github.com/inbo/inbodb/issues

2 connect_inbo_dbase

get_florabank_taxon_ifbl_year 6
get_florabank_traits L. 7
get_inboveg_classification e 8
get_inboveg_header 10
get_inboveg_layer_cover e 12
get_inboveg_layer_qualifier Lo 13
get_inbOVeZ Ppa o 14
get_inboveg_qualifier 16
get_inboveg_recordingo 17
get_inboveg_relation_recording oo 19
et_INDOVEZ_SUIVEY o o vttt e e e e e e e e 21
get_meetnetten_locationso 22
get_meetnetten_observationso e 24
get_meetnetten_schemes oL 27
get_meetnetten_VisSitso e e e 28
get_taxonlijsten_featureso 30
get_taxonlijsten_items L. e 31
get_taxonlijsten_lists 33
Index 36
connect_inbo_dbase Connect to an INBO database
Description

Connects to an INBO database by simply providing the database’s name as an argument. The
function can only be used from within the INBO network.

Usage

connect_inbo_dbase(database_name, autoconvert_utf8 = TRUE)

Arguments

database_name char Name of the INBO database you want to connect
autoconvert_utf8

Should the encoding of the tables that are retrieved from the database be adapted
to ensure correct presentation? Defaults to TRUE.
Details

For more information, refer to this tutorial.

Value

odbc connection

https://inbo.github.io/tutorials/tutorials/r_database_access/

dbDisconnect,OdbcConnection-method 3

Author(s)

Stijn Van Hoey <stijnvanhoey@gmail.com>

Els Lommelen <els.lommelen@inbo.be>

Examples

Not run:
connection <- connect_inbo_dbase("D0021_00_userFlora")
connection <- connect_inbo_dbase("W0003_00_Lims")

End(Not run)

dbDisconnect,0dbcConnection-method
Close database connection

Description

This method is an adaptation to the INBO databases from the eponymous function in the odbc
package and is an implementation of the method dbDisconnect defined in the DBI package.

Usage
S4 method for signature 'OdbcConnection'
dbDisconnect(conn, ...)

Arguments
conn A DBIConnection object, as returned by dbConnect ().

Other parameters passed on to methods.

dbFetch,OdbcResult-method
Fetch query result from database

Description

This method is an adaptation from the eponymous function in the odbc package and is an imple-
mentation of the method dbFetch defined in the DBI package. Additional to the odbc package, it
replaces a cryptic error message by an informative error message.

Usage

S4 method for signature 'OdbcResult'
dbFetch(res, n = -1, ...)

4 get_florabank_observations

Arguments
res An object inheriting from DBIResult, created by dbSendQuery ().
n maximum number of records to retrieve per fetch. Use n=-1 or n=Inf to
retrieve all pending records. Some implementations may recognize other special
values.

Other arguments passed on to methods.

get_florabank_observations

Get all validated observations for one or more taxa from the florabank
database

Description

This function takes as input a character vector with one or more names of species either as scientific
names and/or Dutch names. By default (fixed = FALSE), partial matching will be used (the names
are prepended and appended with %). The function queries the florabank, and returns a dataframe
with observation level information about the matching taxa.

Usage

get_florabank_observations(connection, names, fixed = FALSE, collect = FALSE)

Arguments
connection A connection to the florabank database. See the example section for how to
connect and disconnect to the database.
names Default missing. A character vector with scientific names and/or Dutch names.
If fixed = TRUE, character strings are matched exactly and scientific names must
include authorship in order to match.
fixed Logical. If TRUE, names is to be matched as is (no partial matching) .
collect If FALSE (the default), a remote tb1l object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.
Value

A dataframe with the following variables: NaamNederlands, NaamWetenschappeli jk, Bron, BeginDatum,
EindDatum, hok, Toponiem, CommentaarTaxon, CommentaarHabitat, WaarnemingID, X_waarneming,
Y_waarneming, X_meting, Y_meting

See Also

Other florabank: get_florabank_taxon_ifbl_year(), get_florabank_traits()

get_florabank_observations

Examples

Not run:

code can only be run if a connection to the database is possible
library(inbodb)

connect to florabank

db_connectie <- connect_inbo_dbase("D0021_00_userFlora")

query and collect the data using scientific name
succpratl <- get_florabank_observations(db_connectie,
names = 'Succisa pratensis Moench', collect = TRUE)

the same species but using Dutch name
succprat2 <- get_florabank_observations(db_connectie,
names = 'Blauwe knoop', collect = TRUE)

providing both a Dutch name and scientific name will not duplicate records
if they are the same species

succprat3 <- get_florabank_observations(db_connectie,

names = c("”Succisa pratensis Moench”, "Blauwe knoop”), collect = TRUE)

all.equal(succpratl, succprat2)
all.equal(succpratl, succprat3)

passing dutch names and scientific names for different species

is possible (records for each species is returned)

myspecies1 <- get_florabank_observations(db_connectie,

names = c('Succisa pratensis Moench', 'Gevlekte orchis'), collect = TRUE)

passing multiple dutch names

myspecies?2 <- get_florabank_observations(db_connectie,
names = c('Gevlekte orchis', 'Blauwe knoop'),

collect = TRUE)

all.equal(myspecies1, myspecies2)

using default for collect will return a lazy query

fixed = TRUE for exact matches only

myspecies3 <- get_florabank_observations(db_connectie,
names = c('Succisa pratensis Moench', 'Gevlekte orchis'),
fixed = TRUE)

to collect the data for a lazy query you can also use the collect()
function:

myspecies3 <- dplyr::collect(myspecies3)

disconnect from florabank
dbDisconnect(db_connectie)

End(Not run)

6 get_florabank_taxon_itbl_year

get_florabank_taxon_ifbl_year
Get unique combinations of taxon, IFBL-square and year.

Description

This functions queries all validated observations of the florabank database and returns unique com-
binations of taxon, IFBL-square and year. Either a 1 km by 1 km or a 4 km x 4 km resolution can
be chosen and a begin year can be set. Observations of taxa at genus level or higher are excluded.
The taxonomic group can be chosen.

Usage

get_florabank_taxon_ifbl_year(
connection,
starting_year = 2010,
ifbl_resolution = c("1km-by-1km", "4km-by-4km"),
taxongroup = c("Vaatplanten”, "Mossen”, "Lichenen (korstmossen)"”, "Kranswieren"),
collect = FALSE

Arguments

connection A connection to the florabank database. See the example section for how to
connect and disconnect to the database.

starting_year Filter for observations that start from this year onwards. Default is 2010.
ifbl_resolution

The requested spatial resolution can be either 1km-by-lkm IFBL squares or
4km-by-4km. Default is 1km-by-1km.

taxongroup Choose for which taxonomic group you want the unique combinations. One of
"Vaatplanten" (the default), "Mossen", "Korstmossen" or "Kranswieren".

collect If FALSE (the default), a remote tbl object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.

Value

A dataframe with one line for each combination of taxon, IFBL-square (either at 1 km x 1 km or 4
km x 4 km resolution) and year. In case the resolution is 1 km x 1 km, a variable ifbl_4by4 gives
the corresponding ifbl_4by4 identifier within which the ifbl_1by1 square is located. In case the
resolution is 4 km x 4 km, the variable ifbl_squares is a concatenation of all nested squares with
observations for the taxon in the corresponding year. This can be nested 1 x 1 squares as well as the
corresponding 4 x 4 square (the latter is the case if the original resolution of the observation is at 4
X 4 resolution). In addition, the variable ifbl_number_squares gives the number of unique nested
squares where the taxon was observed for that year and 4 x 4 square combination.

get_florabank _traits 7

See Also

Other florabank: get_florabank_observations(), get_florabank_traits()

Examples

Not run:

library(inbodb)

connect to florabank

db_connectie <- connect_inbo_dbase("D0021_00_userFlora")

get records at 1 km x 1 km resolution for vascular plants from 2010
(default) without collecting all data into memory (default).
fb_kwartier <- get_florabank_taxon_ifbl_year(db_connectie)

to collect the data in memory set collect to TRUE or do
fb_kwartier <- collect(fb_kwartier)

get records at 4 km x 4 km resolution starting from 2000
fb_uur <- get_florabank_taxon_ifbl_year(db_connectie, starting_year = 2000,

ifbl_resolution = "4km-by-4km", taxongroup = "Mossen")

disconnect from florabank
dbDisconnect(db_connectie)

End(Not run)

get_florabank_traits Query the florabank to get taxon trait values for (a) taxon trait(s)

Description
This function takes as input (part of) a taxon trait name, queries the florabank and returns the taxon
trait values in a tidy data format

Usage

get_florabank_traits(connection, trait_name, collect = FALSE)

Arguments
connection A connection to the florabank database. See the example section for how to
connect and disconnect to the database.
trait_name A (part of) a trait name for which you want to get the associated taxon-specific
trait values. If this is missing, the function returns an error and prints a message
showing all possible trait names.
collect If FALSE (the default), a remote tb1l object is returned. This is like a reference

to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.

8 get_inboveg_classification

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) containing the
trait values for each species and for all partially matched traits. The dataframe contains the vari-
ables TaxonID, TaxonAfkorting, TaxonWetenschappelijk, TaxonNederlands, Kenmerk, Code,
Omschrijving, Rekenwaarde, Bron and ExtraOmschrijving. The first four variables identify the
taxon, the latter five variables relate to the taxon traits.

See Also

Other florabank: get_florabank_observations(), get_florabank_taxon_ifbl_year()

Examples

Not run:

library(inbodb)

library(dplyr)

connect to florabank

db_connectie <- connect_inbo_dbase("D0021_00_userFlora")

get all Ellenberg values via partial matching, return as lazy query
fb_ellenberg <- get_florabank_traits(db_connectie, "llenberg")
collect the data
fb_ellenberg <- fb_ellenberg %>% collect()
the same can be done by using the collect parameter
fb_ellenberg <-
get_florabank_traits(db_connectie, "llenberg”, collect = TRUE)

get all red lists via partial matching
fb_rodelijsten <- get_florabank_traits(db_connectie, "rode")

get only the red list for vascular plant species
fb_rodelijstvaatplanten <-

get_florabank_traits(db_connectie, "Rode lijst Vaatplanten”)

#if the trait_name argument is missing, a list of possible names is printed
get_florabank_traits(db_connectie)

#disconnect from florabank
dbDisconnect (db_connectie)

End(Not run)

get_inboveg_classification
Query classification information from INBOVEG

get_inboveg_classification 9

Description

This function queries the INBOVEG database for information on the field classification (N2000 or
local vegetation type, e.2. BWK-code) of the relevé (recording) for one or more survey(s) by the
name of the survey. See the examples for how to get information for all surveys.

Usage

get_inboveg_classification(
connection,
survey_name,
classif,
multiple = FALSE,
collect = FALSE

)
Arguments
connection dbconnection with the database ’Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector giving the name or names of the sur-
vey(s) for which you want to extract Classification information. If missing, all
surveys are returned.
classif A character vector giving the Classification code of the vegetation type for which
you want to extract information. If missing, all classifications are returned.
multiple If TRUE, survey_name can take a character vector with multiple survey names
that must match exactly. If FALSE (the default), survey_name must be a single
character string (one survey name) that can include wildcards to allow partial
matches
collect If FALSE (the default), a remote tb1l object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.
Value

A remote tb1 object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables Id,
SurveyName, Classification-code, vegetation type / BWK or N2000-list, LocalClassification,
Description of the habitat type, Cover-code, Cover in percentage.

See Also

Other inboveg: get_inboveg_header (), get_inboveg_layer_cover(), get_inboveg_layer_qualifier(),
get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_recording(), get_inboveg_relation_recording(),
get_inboveg_survey()

Examples

Not run:
library(inbodb)

10

get_inboveg_header

con <- connect_inbo_dbase("D0010_00_Cydonia")

get a specific classification from a survey and collect the data
classif_info <- get_inboveg_classification(con,
survey_name = "MILKLIM_Heischraal2012", classif = "4010", collect = TRUE)

get the classification from several specific surveys
classif_info <- get_inboveg_classification(con,
survey_name = c(”"MILKLIM_Heischraal2012”, "NICHE Vlaanderen"”),
multiple = TRUE)

get all surveys, all classifications, don't collect the data
allecodes <- get_inboveg_classification(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_inboveg_header Query header information from INBOVEG

Description

This function queries the INBOVEG database for header information (metadata for a vegetation-
recording or relevé) for one or more surveys and the recorder type. All records, also with work
needed’ are selected. See the examples for how to get information for all surveys.

Usage

get_inboveg_header(
connection,
survey_name,
rec_type,
additional_variables = character(0),
multiple = FALSE,
collect = FALSE

)
Arguments
connection dbconnection with the database *Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector giving the name or names of the sur-
vey(s) for which you want to extract header information. If missing, all surveys
are returned.
rec_type A character vector giving the name of record type for which you want to extract

header information e.g. 'Classic’, 'Classic-emmer', 'Classic-ketting’,
'BioHab', 'ABS', 'PPA'. If missing, all recording types are returned.

get_inboveg_header 11

additional_variables
Default character(0). A character vector with names of additional variables
to select from ivRecording table: CoordinateRefSystem, GivenLatitute,
GivenLongitude, GivenLatitude2, GivenLongitude2, Pq, Homogenous

multiple If TRUE, survey_name can take a character vector with multiple survey names
that must match exactly. If FALSE (the default), survey_name must be a single
character string (one survey name) that can include wildcards to allow partial
matches

collect If FALSE (the default), a remote tb1 object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables
RecordingGivid, SurveyName, UserReference, Observer, LocationCode, Latitude, Longitude,
Area (in m2), Length (in cm), Width (in cm), VagueDateType, VagueDateBegin, VagueDateEnd,
Surveyld, RecTypelD, RecTypeName.

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_layer_cover(), get_inboveg_layer_qualifier(),
get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_recording(), get_inboveg_relation_recording(),
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get header information from a specific survey and a specific recording type
and collect the data

header_info <- get_inboveg_header(con, survey_name = "OudelLanden_1979",
rec_type = "Classic"”, collect = TRUE)

with additional variables

header_info <- get_inboveg_header(con, survey_name = "OudelLanden_1979",
rec_type = "Classic”, additional_variables = c("Pq"”, "Homogenous"),
collect = TRUE)

get header information from several specific surveys
header_severalsurveys <- get_inboveg_header(con, survey_name =
C("MILKLIM_Heischraal2012"”, "NICHE Vlaanderen"”), multiple = TRUE)

get header information of all surveys, don't collect the data
all_header_info <- get_inboveg_header(con)

close the connection when done
dbDisconnect(con)
rm(con)

12 get_inboveg_layer_cover

End(Not run)

get_inboveg_layer_cover

Query layer information of the cover for recordings (relevé) from IN-
BOVEG

Description
This function queries the INBOVEG database for layer information (layer and cover) on recordings
for one or more surveys.

Usage

get_inboveg_layer_cover(connection, survey_name, multiple = FALSE)

Arguments
connection dbconnection with the database *Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector, depending on multiple parameter, giving
the name or names of the survey(s) for which you want to extract recordings
information. If missing, all surveys are returned.
multiple If TRUE, survey_name can take a character vector with multiple survey names
that must match exactly. If FALSE (the default), survey_name must be a single
character string (one survey name) that can include wildcards to allow partial
matches
Value

A dataframe with variables Name (of the survey), RecordingGivid (unique Id), UserReference,
LayerCode, LayerDescription, CoverCode, Coverpercentage and Mean height (cm)

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_qualifier(),
get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_recording(), get_inboveg_relation_recording(),
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get the layer information from one survey
layerinfo_heischraal2012 <- get_inboveg_layer_cover(con, survey_name =
"MILKLIM_Heischraal2012")

get_inboveg_layer_qualifier 13

get all layer qualifiers from MILKLIM surveys (partial matching)
layerinfo_milkim <- get_inboveg_layer_cover(con, survey_name = "%MILKLIM%")

get layer qualifiers from several specific surveys
layerinfo_severalsurveys <- get_inboveg_layer_cover(con, survey_name =
c("MILKLIM_Heischraal2012”, "NICHE Vlaanderen"), multiple = TRUE)

get all layer qualifiers of all surveys
all_layerinfo <- get_inboveg_layer_cover(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_inboveg_layer_qualifier

Query layer qualifier information of recordings (relevé) from IN-
BOVEG

Description
This function queries the INBOVEG database for layer qualifier information on recordings for one
Or more Surveys.

Usage

get_inboveg_layer_qualifier(connection, survey_name, multiple = FALSE)

Arguments
connection dbconnection with the database ’Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector, depending on multiple parameter, giving
the name or names of the survey(s) for which you want to extract information.
If missing, all surveys are returned.
multiple If TRUE, survey_name can take a character vector with multiple survey names
that must match exactly. If FALSE (the default), survey_name must be a single
character string (one survey name) that can include wildcards to allow partial
matches
Value

A dataframe with variables Name (of the survey), RecordingGivid (unique Id), UserReference,
LayerCode, LayerDescription, QualifierCode, Qualifier Description, Elucidation and
NotSure in case the qualifier is doubtful, CoverCode and Cover percentage

14 get_inboveg_ppa

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_cover(),
get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_recording(), get_inboveg_relation_recording(),
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get the layer qualifiers from one survey
layerqualifiers_Gagealutea <-
get_inboveg_layer_qualifier(con, survey_name = "Gagealutea_1980")

get all layer qualifiers from MILKLIM surveys (partial matching)
layerqualifiers_milkim <-
get_inboveg_layer_qualifier(con, survey_name = "%MILKLIM%")

get layer qualifiers from several specific surveys

layerqualifiers_severalsurveys <- get_inboveg_layer_qualifier(con,
survey_name = c("MILKLIM_Overstroming”, "NICHE Vlaanderen"),
multiple = TRUE)

get all layer qualifiers of all surveys
alllayerqualifiers <- get_inboveg_layer_qualifier(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_inboveg_ppa Query PPA (point-plant distance) information from INBOVEG

Description

This function queries the INBOVEG database for PPA-type relevé information (which species were
recorded at what distance from a point location) for one or more surveys, or in combination with
the unique ID (recordingGIVID) or user reference Wildcards in survey_name, user_reference
or recording_givid should only be used if a character string (a length one character vector),
otherwise values are assumed to match exactly.

Usage

get_inboveg_ppa(
connection,

get_inboveg_ppa 15

survey_name = "%",
user_reference = "%",
recording_givid = "%",
collect = FALSE
)
Arguments
connection dbconnection with the database ’Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector, giving the name or names of the sur-

vey(s) for which you want to extract relevé information. As default (survey_name
="%") all surveys are returned.

user_reference A character string or a character vector giving the name of a recording for which
you want to extract relevé information. As default (user_reference ="%") all
user-references are returned.

recording_givid
A character string or a character vector giving the unique id of a recording for
which you want to extract relevé information. As default (recording_givids
="%") all recording_givids are returned.

collect If FALSE (the default), a remote tbl object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables
SurveyName, RecordingGivid, UserReference, DateRecording, LocationCode, CoordinateRefSystem,
GivenlLatitude, GivenLongitude, GivenLatitude2, GivenLongitude2, MaxSearchEffortUnit,
MaxSearchEffortlLabel, Indirect, NotSure, LayerCode, LayerCover, OriginalName, ScientificName,
TaxonGroupCode, PhenologyCode, Distance, Comment DateIdentification, RecordTypeName

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_cover(),
get_inboveg_layer_qualifier(), get_inboveg_qualifier(), get_inboveg_recording(), get_inboveg_relation_|
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get the recordings from one survey and collect the data
specifieke_survey <- get_inboveg_ppa(con, survey_name =

"LEN_sinusmaaiproject_ppa”, collect = TRUE)

get all recordings from with partial matching, don't collect

16 get_inboveg_qualifier

partial_match <- get_inboveg_ppa(con, survey_name = "%LEN%",
collect = FALSE)

get recordings from several specific recordinggivid
recording_severalgivids <- get_inboveg_ppa(con,

recording_givid = c("IV2024040411243457","IV2024040411263782"),
collect = TRUE)

get all PPA-type recordings of all surveys, don't collect the data
all_ppa <- get_inboveg_ppa(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_inboveg_qualifier Query qualifier information of recordings (relevé) from INBOVEG

Description

This function queries the INBOVEG database for qualifier information (site qualifier or manage-
ment qualifier)on recordings for one or more surveys.

Usage

get_inboveg_qualifier(
connection,
survey_name,
qualifier_type,
multiple = FALSE

)

Arguments
connection dbconnection with the database *’Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector, depending on multiple parameter, giving

the name or names of the survey(s) for which you want to extract recordings
information. If missing, all surveys are returned.

qualifier_type A character vector giving the name of qualifier type for which you want to ex-
tract information e.g. 'SQ' (site qualifier), 'MQ' (management qualifier). If
missing, all qualifier types are returned.

multiple If TRUE, survey_name can take a character vector with multiple survey names
that must match exactly. If FALSE (the default), survey_name must be a single
character string (one survey name) that can include wildcards to allow partial
matches

get_inboveg_recording 17

Value

A dataframe with variables RecordingGivid (unique Id), UserReference, Observer, QualifierType,
QualifierCode, Description, 2nd QualifierCode, 2nd Description, 3rd QualifierCode,
3rd Description, Elucidation, in case qualifier is 'NotSure', ParentID, QualifierResource

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_cover(),
get_inboveg_layer_qualifier(), get_inboveg_ppa(), get_inboveg_recording(), get_inboveg_relation_record:
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get the qualifiers from one survey
qualifiers_heischraal2012 <- get_inboveg_qualifier(con, survey_name =
"MILKLIM_Heischraal2012")

get all site qualifiers (SQ) from MILKLIM surveys (partial matching)
qualifiers_milkim <- get_inboveg_qualifier(con, survey_name = "%MILKLIM%",
qualifier_type = "SQ")

get qualifiers from several specific surveys
qualifiers_severalsurveys <- get_inboveg_qualifier(con, survey_name =
C("MILKLIM_Heischraal2012"”, "NICHE Vlaanderen”), multiple = TRUE)

get all qualifiers of all surveys
allqualifiers <- get_inboveg_qualifier(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_inboveg_recording Query recording (relevé) information from INBOVEG

Description

This function queries the INBOVEG database for relevé information (which species were recorded
in which plots and in which vegetation layers with which cover) for one or more surveys, or in
combination with the unique ID (recordingGIVID) or user reference Wildcards in survey_name,
user_reference or recording_givid should only be used if a character string (a length one char-
acter vector), otherwise values are assumed to match exactly.

18 get_inboveg_recording

Usage
get_inboveg_recording(
connection,
survey_name = "%",
user_reference = "%",
recording_givid = "%",

collect = FALSE,
multiple = deprecated()

)

Arguments
connection dbconnection with the database *’Cydonia’ on the inbo-sql@7-prd server
survey_name A character string or a character vector, giving the name or names of the sur-

vey(s) for which you want to extract relevé information. As default (survey_name
="%") all surveys are returned.

user_reference A character string or a character vector giving the name of a recording for which
you want to extract relevé information. As default (user_reference ="%") all
user-references are returned.

recording_givid
A character string or a character vector giving the unique id of a recording for
which you want to extract relevé information. As default (recording_givids
="%") all recording_givids are returned.

collect If FALSE (the default), a remote tbl object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.

multiple Deprecated.

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables
RecordingGivid (unique ID), User reference, LayerCode, CoverCode, OriginalName, ScientificName,
TaxonGroupCode, PhenologyCode, Comment, CoverageCode, PctValue (percentage coverage),
RecordingScale (name of the scale of coverage)

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_cover(),
get_inboveg_layer_qualifier(), get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_relation_record:
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get_inboveg_relation_recording 19

get the recordings from one survey and collect the data
recording_heischraal2012 <- get_inboveg_recording(con, survey_name =
"MILKLIM_Heischraal2012", collect = TRUE)

get all recordings from MILKLIM surveys (partial matching), don't collect
recording_milkim <- get_inboveg_recording(con, survey_name = "%MILKLIM%",
collect = FALSE)

get recordings from several specific surveys
recording_severalsurveys <- get_inboveg_recording(con, survey_name =
C("MILKLIM_Heischraal2012"”, "NICHE Vlaanderen"),

collect = TRUE)

get recordings from several specific recordinggivid
recording_severalgivids <- get_inboveg_recording(con,
recording_givid = c("IV2012081609450300","IV2012081610204607"),
collect = TRUE)

get all recordings of all surveys, don't collect the data
allrecordings <- get_inboveg_recording(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_inboveg_relation_recording
Query relation (Parent - Child) information of recordings (relevé) from

INBOVEG

Description

This function queries the INBOVEG database for relation information on recordings for one or
more surveys based on Parent (classic-chain/bucket) and Child (classic) relationship.

Usage

get_inboveg_relation_recording(
connection,
survey_name,
multiple = FALSE,
collect = FALSE

Arguments

connection dbconnection with the database *Cydonia’ on the inbo-sql@7-prd server

20 get_inboveg_relation_recording

survey_name A character string or a character vector, depending on multiple parameter, giving
the name or names of the survey(s) for which you want to extract recordings
information. If missing, all surveys are returned.

multiple If TRUE, survey_name can take a character vector with multiple survey names
that must match exactly. If FALSE (the default), survey_name must be a single
character string (one survey name) that can include wildcards to allow partial
matches

collect If FALSE (the default), a remote tb1l object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.

Value

A dataframe with variables RecordingId, Child_GIVID (unique RecordingGIVID), Child_UserRef
(UserReference), ParentId (RecordingId), Parent_GIVID (unique RecordingGIVID) and Parent_UserRef
(UserReference)

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_cover(),
get_inboveg_layer_qualifier(), get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_recording(),
get_inboveg_survey()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get the Parent-Child-relations from one survey
relations_N200@0@meetnet_Grasland <- get_inboveg_relation_recording(con,
survey_name = "N200@@meetnet_Grasland”)

get all Parent-Child-relations from N20@@meetnet surveys (partial matching)
relations_N20@0meetnet <-
get_inboveg_relation_recording(con, survey_name = "%N200@meetnet%")

get Parent-Child-relations from several specific surveys
relations_severalsurveys <-
get_inboveg_relation_recording(con,
survey_name = c("DeBlankaart-1985-Beheer”, "N2000@meetnet_Grasland”),
multiple = TRUE)

get all Parent-Child-relations of all relevant surveys
allrelations <- get_inboveg_relation_recording(con)

Close the connection when done
dbDisconnect(con)
rm(con)

get_inboveg_survey 21

End(Not run)

get_inboveg_survey Query survey information from INBOVEG

Description

This function queries the INBOVEG database for survey information (metadata about surveys) for
one or more survey(s) by the name of the survey. See the examples for how to get information for
all surveys.

Usage

get_inboveg_survey(connection, survey_name, collect = FALSE)

Arguments
connection dbconnection with the database *Cydonia’ on the inbo-sql@7-prd server
survey_name A character vector giving the names of the surveys for which you want to extract
survey information.
collect If FALSE (the default), a remote tb1l object is returned. This is like a reference
to the result of the query but the full result of the query is not brought into
memory. If TRUE the full result of the query is collected (fetched) from the
database and brought into memory of the working environment.
Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables Id,
Name, Description, Owner and Creator.

See Also

Other inboveg: get_inboveg_classification(), get_inboveg_header(), get_inboveg_layer_cover(),
get_inboveg_layer_qualifier(), get_inboveg_ppa(), get_inboveg_qualifier(), get_inboveg_recording(),
get_inboveg_relation_recording()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0010_00_Cydonia")

get information of a specific survey and collect data
survey_info <- get_inboveg_survey(con, survey_name = "QOudeLanden_1979",

collect = TRUE)

get information of all surveys and collect data

22 get_meetnetten_locations

allsurveys <- get_inboveg_survey(con)
Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_meetnetten_locations
Query monitoring scheme locations from Meetnetten

Description

This function queries the Meetnetten database for the locations and sublocations for a specified
monitoring scheme or for all monitoring schemes within a specified species group. When no moni-
toring scheme or species group is specified, the observations of all monitoring schemes are returned.

Usage

get_meetnetten_locations(connection, scheme_name = NULL, species_group = NULL)

Arguments
connection dbconnection with the database >S0008_00_Meetnetten’ on the inbo-sql08-prd.inbo.be
server
scheme_name the name of the monitoring scheme for which you want to extract location data.

Data from multiple schemes can be selected by providing a vector with the
names of the schemes.

species_group the name of the species group for which you want to extract location data. Data
from multiple species groups can be selected by providing a vector with the
names of the species groups.

Details

Each monitoring scheme of the species monitoring programme of Flanders Meetnetten consists of a
fixed set of locations. A monitoring scheme for rare species includes all locations where the species
occurs. For more common species a sample of locations is drawn and the the selected locations
are included in the monitoring scheme. In some cases, the monitoring project in Meetnetten also
contains locations that are not part of the sample. These locations can be counted optionally and
are indicated by (is_sample = FALSE).

It also occurs that a location becomes inaccessible or that the target species disappears. Then, a
locations can be made inactive (is_active = FALSE), which means that no observations can be
recorded any more.

https://www.meetnetten.be
https://www.meetnetten.be

get_meetnetten_locations 23

Value

When the sf package is installed, a list with two sf objects is returned:

* main_locations: the main locations of the selected monitoring schemes, with following
attribute variables:
— species_group
— scheme: name of the monitoring scheme
— location: name of the location

— is_sample: whether the location belongs to the sample of locations for the monitoring
scheme (see details)

— is_active: when a location is not suited for counting any more, the location becomes
inactive (is_active = FALSE)
* sublocations: the sublocations (for example the sections of a transect) for each of the se-
lected main locations, with following attribute variables:
— species_group
— scheme: name of the monitoring scheme
— location: name of the main location
— sublocation: name of the sublocation
— is_active: whether the sublocation is counted or not

When the sf package is not installed, a list with two tibble objects is returned, with the same
attribute variables as above and an additional variable geom that contains the geometry information
in wkt (well-known text) format.

Not all main locations are subdivided in sublocations. So in some cases the sublocations object is
empty.

See Also

Other meetnetten: get_meetnetten_observations(), get_meetnetten_schemes(), get_meetnetten_visits()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("S0008_00_Meetnetten")

get locations for a specific monitoring scheme
locations_heivlinder <- get_meetnetten_locations(con,
scheme_name = "Heivlinder")

locations_heivlinder$main_locations
locations_heivlinder$sublocations

get locations for a specific species_group
locations_dragonflies <- get_meetnetten_locations(con,

species_group = "libellen”)

locations_dragonflies$main_locations

24 get_meetnetten_observations

locations_dragonflies$sublocations

Close the connection when done
dbDisconnect(con)

rm(con)

rm(locations_heivlinder)
rm(locations_dragonflies)

End(Not run)

get_meetnetten_observations
Query observation data from Meetnetten

Description

This function queries the Meetnetten database for observation data (standardized counts) for a spec-
ified monitoring scheme or for all monitoring schemes within a specified species group. When no
monitoring scheme or species group is specified, the observations of all monitoring schemes are
returned.

Usage

get_meetnetten_observations(
connection,
scheme_name = NULL,
species_group = NULL,
collect = FALSE

)
Arguments
connection dbconnection with the database >S0008_00_Meetnetten’ on the inbo-sql08-prd.inbo.be
server
scheme_name the name of the monitoring scheme for which you want to extract visit data. Data

from multiple schemes can be selected by providing a vector with the names of
the schemes.

species_group the name of the species group for which you want to extract visit data. Data from
multiple species groups can be selected by providing a vector with the names of
the species groups.

collect If FALSE (the default), a remote tb1 object is returned. This is like a reference to
the result of the query but the full result of the query is not brought into memory.
If TRUE the full result of the query is collected (fetched) from the database and
brought into memory of the working environment.

get_meetnetten_observations 25

Details

The species monitoring programme of Flanders (Meetnetten) consists of a series of monitoring
schemes in which one or more target species are counted based on a specific protocol. Option-
ally, other species, that can be counted using the same protocol, can be recorded as well. When
checklist_complete = TRUE, all secondary species were counted, and we can assume that the
secondary species that were not recorded are absent.

Depending on the protocol, counting has to be done at the location or the sublocation level. Subloca-
tions are, for example, different sections of a transect. For some monitoring schemes, it is necessary
to record several count subevents at the location level. This is, for example, the case for the crested
newt fyke count protocol, where two fykes are used per location and the counts are recorded per
fyke. For every count subevent a unique sample_id is created.

The protocol of a monitoring scheme also defines for which combinations of sex, life stage, and
activity type the counts have to be recorded. For example, for the crested newt fyke counts the
number of female adults, male adults and juveniles (sex undefined) are counted. Another example:
in the alcon blue monitoring scheme only the number of eggs are counted.

It is also important to know that counts can be recorded in the Meetnetten website or by using
the Meetnetten app. When using the Meetnetten app, the GPS coordinates of all observations are
recorded and the observations are assigned to a location or sublocation based on the coordinates.
For example, when you record a butterfly transect count in the website, you will enter the total
number of individuals per species for each section (the sublocation) of the transect. When you use
the app, you can record the position of every individual separately in the Meetnetten database. So
when you want to know the total number of individuals per section, you will have to aggregate the
data.

To conclude, it is important to understand how the data is organised for a certain monitoring scheme,
before you start analysing the data. For more details on the monitoring schemes we refer to Maes
et al. (2023)

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with following
variables:

* species_group

e scheme

* protocol: the protocol used

e visit_id: unique id for a count event

* start_date:date of the observation

* location: the name of the location

* sublocation: the name of the sublocation

* not_counted: TRUE when the sublocation is not counted

* sample_id: unique id for a count subevent (see details)

* target_species: TRUE when the observed species is the target species, FALSE when the
observed species is a secondary species (another species than the target species that can be
counted with the same protocol, see details)

https://www.meetnetten.be
https://www.meetnetten.be

26 get_meetnetten_observations

* checklist_complete: whether all secondary species, defined in the monitoring scheme, are
counted

* name_nl: Dutch name of the observed species

* scientific_name: scientific name of the observed species
¢ sex: M (male), F (female), U (undefined)

e activity: activity of the observed species

* life_stage: live stage of the observed species

* count: number of individuals counted

e count_type: most of the time the number of individuals are counted (count_type = exact
count), however for some monitoring schemes different type of counts are performed. Check
the protocol for more information when this is the case.

¢ notes: notes of the observed

* x and y: when the Meetnetten-app is used, GPS coordinates (longitude and latitude, crs =
WGS84) of each observation is recorded

References

* Maes D, Piesschaert F, Ledegen H, Van De Poel S, Adriaens T, Anselin A, Belpaire C, Breine
J, Brosens D, Brys R, De Bruyn L, Decleer K, De Knijf G, Devos K, Driessens G, Feys S,
Gouwy J, Gyselings R, Herremans M, Jacobs I, Lewylle I, Leyssen A, Louette G, Onkelinx
T, Packet J, Provoost S, Quataert P, Ruyts S, Scheppers T, Speybroeck J, Steeman R, Stienen
E, Thomaes A, Van Den Berge K, Van Keer K, Van Landuyt W, Van Thuyne G, Veraghtert W,
Verbelen D, Verbeylen G, Vermeersch G, Westra T, Pollet M (2023). Monitoring schemes for
species of conservation concern in Flanders (northern Belgium). An overview of established
schemes and the design of an additional monitoring scheme. Reports of the Research Institute
for Nature and Forest (INBO) 2023 (15). Research Institute for Nature and Forest (INBO),
Brussels. doi:10.21436/inbor.93332112.

See Also

Other meetnetten: get_meetnetten_locations(), get_meetnetten_schemes(), get_meetnetten_visits()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("S0008_00_Meetnetten")

get observations for a specific monitoring scheme and collect data
get_meetnetten_observations(con, scheme_name = "Boomkikker", collect = TRUE)

get observations for a specific species_group and collect data
get_meetnetten_observations(con, species_group = "libellen”, collect = TRUE)

get observations for all species and do not collect data
observations_all <- get_meetnetten_observations(con)

Close the connection when done

https://doi.org/10.21436/inbor.93332112

get_meetnetten_schemes 27

dbDisconnect(con)
rm(con)
rm(observations_all)

End(Not run)

get_meetnetten_schemes
Overview of monitoring schemes in the Meetnetten database

Description
This function queries the Meetnetten database to give an overview of monitoring schemes that are
included.

Usage

get_meetnetten_schemes(connection)

Arguments
connection dbconnection with the database >S0008_00_Meetnetten’ on the inbo-sql08-prd.inbo.be
server.
Details

The species monitoring programme of Flanders (Meetnetten) consists of a series of monitoring
schemes. In each monitoring scheme one or more target species are counted based on a specific
protocol. For more details we refer to Maes et al. (2023)

Value

A tibble dataframe with variables species_group, scheme and protocol.

References

* Maes D, Piesschaert F, Ledegen H, Van De Poel S, Adriaens T, Anselin A, Belpaire C, Breine
J, Brosens D, Brys R, De Bruyn L, Decleer K, De Knijf G, Devos K, Driessens G, Feys S,
Gouwy J, Gyselings R, Herremans M, Jacobs I, Lewylle I, Leyssen A, Louette G, Onkelinx
T, Packet J, Provoost S, Quataert P, Ruyts S, Scheppers T, Speybroeck J, Steeman R, Stienen
E, Thomaes A, Van Den Berge K, Van Keer K, Van Landuyt W, Van Thuyne G, Veraghtert W,
Verbelen D, Verbeylen G, Vermeersch G, Westra T, Pollet M (2023). Monitoring schemes for
species of conservation concern in Flanders (northern Belgium). An overview of established
schemes and the design of an additional monitoring scheme. Reports of the Research Institute
for Nature and Forest (INBO) 2023 (15). Research Institute for Nature and Forest (INBO),
Brussels. doi:10.21436/inbor.93332112.

https://www.meetnetten.be
https://doi.org/10.21436/inbor.93332112

28 get_meetnetten_visits

See Also

Other meetnetten: get_meetnetten_locations(), get_meetnetten_observations(), get_meetnetten_visits()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("S0008_00_Meetnetten")

get overview of monitoring schemes in meetnetten database
meetnetten_schemes <- get_meetnetten_schemes(con)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_meetnetten_visits Query visit data from Meetnetten

Description

This function queries the Meetnetten database for visit data (data about a counting event) for a spec-
ified monitoring scheme or for all monitoring schemes within a specified species group. When no
monitoring scheme or species group is specified, the visits of all monitoring schemes are returned.

Usage

get_meetnetten_visits(
connection,
scheme_name = NULL,
species_group = NULL,
collect = FALSE

)
Arguments
connection dbconnection with the database *S0008_00_Meetnetten’ on the inbo-sql08-prd.inbo.be
server.
scheme_name the name of the monitoring scheme for which you want to extract visit data.

species_group the name of the species group for which you want to extract visit data.

collect If FALSE (the default), a remote tbl object is returned. This is like a reference to
the result of the query but the full result of the query is not brought into memory.
If TRUE the full result of the query is collected (fetched) from the database and
brought into memory of the working environment.

get_meetnetten_visits 29

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with following
variables:

* species_group

* scheme: the name of the monitoring scheme

* protocol: the protocol used

* location: the name of the location

e visit_id: unique id for a count event

* validation_status: validation status of the visit (visits that are validated and not approved
are not provided)

— 10: visit not validated
— 100: visit validated and approved

* start_date: the start date of the visit

* start_time: the start time of the visit

* end_date: the end date of the visit

* end_time: the end time of the visit

* date_created: the date at which the data was imported in the database

* visit_status: the status of the visit (determined by the observer) using following categories:

— conform protocol: the protocol was applied
— weersomstandigheden waren ongunstig: weather conditions were unfavourable
— telmethode uit handleiding niet gevolgd: the protocol was not applied

— geen veldwerk mogelijk - locatie ontoegankelijk: counting was not possible be-
cause the location is inaccessible

— geen veldwerk mogelijk - locatie is ongeschikt voor de soort: counting was not
possible because the location is not suitable for the species

» for_analysis: whether the data is suited for analysis (determined by the validator)

» for_targets: every year targets are set in terms of the number of locations that have to
be counted per monitoring scheme; when for_targets = TRUE the visit contributes to these
targets

* notes: notes by the observer

See Also

Other meetnetten: get_meetnetten_locations(), get_meetnetten_observations(), get_meetnetten_schemes()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("S0008_00_Meetnetten")

get visits for a specific monitoring scheme and collect data

30

get_taxonlijsten_features

get_meetnetten_visits(con, scheme_name = "Boomkikker", collect = TRUE)

get visits for a specific species_group and collect data
get_meetnetten_visits(con, species_group = "libellen”, collect = TRUE)

get visits for all species and do not collect data
visits_all <- get_meetnetten_visits(con)

Close the connection when done

dbDisconnect(con)

rm(con)

rm(visits_all)

End(Not run)

get_taxonlijsten_features

Query to extract Taxonlist features from D@156_00_Taxonlijsten

Description

This function queries D@156_00_Taxonlijsten and gives an overview of all the features associated
with a TaxonlijstVersie (a red list status or an annex of the Habitat Directive are examples of a
feature). This is an auxiliary function to check the accepted values (KenmerkwaardeCodes) of the
feature parameter in the core function get_taxonlijsten_items

Usage

get_taxonlijsten_features(

connection,
list = "%",
c("latest”, "old"”, "all"),

version

collect = FALSE

Arguments

connection
list

version

collect

dbconnection with the database D@156_00_Taxonlijsten on the inbo-sql07-
prd server

name of the taxonlist that you want to retrieve. Wildcards % are allowed. Case
insensitive.

A choice (latest’, ’old’, ’all’). If ’latest’ (the default) only the most recent
version is returned. If old’ all but the most recent version is returned. If *all” all
versions are returned.

If FALSE (the default), a remote tbl object is returned. This is like a reference to
the result of the query but the full result of the query is not brought into memory.
If TRUE the full result of the query is collected (fetched) from the database and
brought into memory of the working environment.

get_taxonlijsten_items 31

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables Tax-
onlijst, Publicatiejaar, Version, Kenmerkcode, KenmerkBeschrijving, KenmerkwaardeCode, Ken-
merkwaardeBeschrijving

See Also

Other taxonlijsten: get_taxonlijsten_items(), get_taxonlijsten_lists()

Examples

Not run:
library(inbodb)
con <- connect_inbo_dbase("D0156_00_Taxonlijsten")

get features of all versions of the 'Rode lijst van de Dagvlinders'
get_taxonlijsten_features(con, version = 'all', list = '%rode%dagvlinders%’
, collect = TRUE)

get features of Habitattypical fauna
get_taxonlijsten_features(con, list = '%Habitattyp%fauna%')

use function with default values (all features of recent versions)
get_taxonlijsten_features(con)

note that function also returns taxonlists without features
get_taxonlijsten_features(con, list = '%SBP%')

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_taxonlijsten_items

Query to extract the taxa on a taxonlist from
D0156_00_Taxonlijsten

Description

This function queries D@156_00_Taxonlijsten and gives an overview of the taxa that are on a
given taxon list version. The interpreted taxa are given by default, but it is possible to add taxa
as they were originally published. The taxa of the latest list version are shown unless specified
otherwise.

32 get_taxonlijsten_items

Usage

get_taxonlijsten_items(
connection,
list = "%",
taxon = "%",
feature = "%",
version = c("latest”, "old"”, "all"),
original = FALSE,
collect = FALSE

)
Arguments

connection dbconnection with the database D@156_00_Taxonlijsten on the inbo-sql07-
prd server

list name of the taxonlist that you want to retrieve. Wildcards % are allowed. Case
insensitive.

taxon name of the taxon you want to retrieve. Scientific and vernacular (Dutch) names
are allowed. Wildcards % are allowed. Case insensitive.

feature name of the list feature (actually feature code) you want to retrieve. Wildcards
% are allowed. Case insensitive.

version A choice (latest’, ’old’, ’all’). If ’latest’ (the default) only the most recent
version is returned. If old’ all but the most recent version is returned. If *all’ all
versions are returned.

original If FALSE (the default), the function will only retrieve the interpreted taxa. If
TRUE, columns with the original taxa will be added to the output. For example,
if the originally published taxon on a taxonlist is ’Cicindela spec.’, the interpre-
tation will exist of all relevant Cicindela species

collect If FALSE (the default), a remote tbl object is returned. This is like a reference to
the result of the query but the full result of the query is not brought into memory.
If TRUE the full result of the query is collected (fetched) from the database and
brought into memory of the working environment.

Value

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables Lijst,
Publicatiejaar, Laatste Versie, Taxongroep, Naamwet_interpretatie, Auteur, NaamNed_interpretatie,

Kenmerk, KenmerkwaardeCode, Kenmerkwaarde and extra variables Taxongroep_origineel, Naamwet_origineel,
Naamned_origineel when requested (original = TRUE)

See Also

Other taxonlijsten: get_taxonlijsten_features(), get_taxonlijsten_lists()

get_taxonlijsten_lists 33

Examples

Not run:

library(inbodb)

library(tidyverse)

con <- connect_inbo_dbase("D0156_00_Taxonlijsten")

Get all taxa from list 'Jachtdecreet'
get_taxonlijsten_items(con, list = 'Jachtdecreet', collect = TRUE)

Get all taxa on category 2 of 'Soortenbesluit'
get_taxonlijsten_items(con, list = ‘'soortenbesluit', feature = 'cat2')

Get all taxonlist that include 'Gentiaanblauwtje'
get_taxonlijsten_items(con, taxon = 'Gentiaanblauwtje', collect = TRUE)

Get all taxa with red list status CR (critically endangered)
get_taxonlijsten_items(con, feature = 'CR')

Get original and interpreted Cicindela taxa from list 'Soortenbesluit'

get_taxonlijsten_items(con, list = 'Soortenbesluit', taxon = '%Cicindela%’
, original = TRUE) %>%
select('Naamwet_origineel', 'NaamNed_origineel', 'Naamwet_interpretatie’

, 'NaamNed_interpretatie')

Compare red list status on multiple listversions
get_taxonlijsten_items(con, version = 'all'

, list = 'rode lijst van de dagvlinders') %>%

select('Lijst', 'Publicatiejaar', 'Naamwet_interpretatie’

, 'NaamNed_interpretatie', 'KenmerkwaardeCode') %>%
pivot_wider(names_from = Publicatiejaar, values_from = KenmerkwaardeCode)

Close the connection when done
dbDisconnect(con)

rm(con)

End(Not run)

get_taxonlijsten_lists
Query to extract Taxonlijsten from D@156_00_Taxonlijsten

Description

This function queries D@156_0@_Taxonlijsten and gives an overview of all the taxon lists and
list versions currently available in the database. Only the latest version is shown unless specified
otherwise

34

Usage

get_taxonlijsten_lists

get_taxonlijsten_lists(

connection,
list = "%",
c("latest”, "old", "all"),

version

collect = FALSE

Arguments

connection

list

version

collect

Value

dbconnection with the database D@156_00_Taxonlijsten on the inbo-sql07-
prd server

name of the taxonlist that you want to retrieve. Wildcards % are allowed. Case
insensitive.

A choice (latest’, ’old’, ’all’). If ’latest’ (the default) only the most recent
version is returned. If *old’ all but the most recent version is returned. If *all’ all
versions are returned.

If FALSE (the default), a remote tbl object is returned. This is like a reference to
the result of the query but the full result of the query is not brought into memory.
If TRUE the full result of the query is collected (fetched) from the database and
brought into memory of the working environment.

A remote tbl object (collect = FALSE) or a tibble dataframe (collect = TRUE) with variables Taxon-
lijstType, TaxonlijstCode, Taxonlijst, Publicatiejaar, Version, ReferentieURL, Criteria, Validering,

Vaststelling.

See Also

Other taxonlijsten: get_taxonlijsten_features(), get_taxonlijsten_items()

Examples

Not run:

library(inbodb)

con <- connect_inbo_dbase("D@156_00_Taxonlijsten")

get the most recent version of the 'Rode lijst van de Dagvlinders'
get_taxonlijsten_lists(con, version = 'latest',6 list =
'%rode%dagvlinders%', collect = FALSE)

get all recent red lists
get_taxonlijsten_lists(con, list = '%rode lijst%')

get all taxonlist versions in the database
get_taxonlijsten_lists(con, version = 'all', collect = TRUE)

use function with default values (only most recent versions)

get_taxonlijsten_lists

get_taxonlijsten_lists(con)

status of red lists

rl <- get_taxonlijsten_lists(con, list = '%rode lijst%')
select(rl,"Taxonlijst"”, "PublicatieJaar”, "Criteria”, "Validering",
"Vaststelling")

Close the connection when done
dbDisconnect(con)

rm(con, rl)

End(Not run)

35

Index

* florabank
get_florabank_observations, 4
get_florabank_taxon_ifbl_year, 6
get_florabank_traits, 7

* inboveg
get_inboveg_classification, 8
get_inboveg_header, 10
get_inboveg_layer_cover, 12
get_inboveg_layer_qualifier, 13
get_inboveg_ppa, 14
get_inboveg_qualifier, 16
get_inboveg_recording, 17
get_inboveg_relation_recording, 19
get_inboveg_survey, 21

* meetnetten
get_meetnetten_locations, 22
get_meetnetten_observations, 24
get_meetnetten_schemes, 27
get_meetnetten_visits, 28

* taxonlijsten
get_taxonlijsten_features, 30
get_taxonlijsten_items, 31
get_taxonlijsten_lists, 33

connect_inbo_dbase, 2

dbConnect(), 3
dbDisconnect,OdbcConnection-method, 3
dbFetch,OdbcResult-method, 3
DBIConnection, 3

DBIResult, 4

dbSendQuery(), 4

get_florabank_observations, 4,7, 8

get_florabank_taxon_ifbl_year, 4,6, 8

get_florabank_traits, 4,7,7

get_inboveg_classification, 8, 11, 12, 14,
15,17, 18, 20, 21

get_inboveg_header, 9, 10, 12, 14, 15, 17,
18, 20, 21

36

get_inboveg_layer_cover, 9, 11,12, 14, 15,
17,18, 20, 21
get_inboveg_layer_qualifier, 9,11, 12,
13,15,17, 18, 20, 21
get_inboveg_ppa, 9, 11, 12, 14,14, 17, 18,
20, 21
get_inboveg_qualifier, 9,11, 12, 14, 15,
16, 18, 20, 21
get_inboveg_recording, 9, 11, 12, 14, 15,
17,17, 20, 21
get_inboveg_relation_recording, 9, 11,
12,14, 15,17, 18,19, 21
get_inboveg_survey, 9, 11, 12, 14, 15, 17,
18, 20,21
get_meetnetten_locations, 22, 26, 28, 29
get_meetnetten_observations, 23, 24, 28
29
get_meetnetten_schemes, 23, 26, 27, 29
get_meetnetten_visits, 23, 26, 28, 28
get_taxonlijsten_features, 30, 32, 34
get_taxonlijsten_items, 31, 31, 34
get_taxonlijsten_lists, 31, 32,33

	connect_inbo_dbase
	dbDisconnect,OdbcConnection-method
	dbFetch,OdbcResult-method
	get_florabank_observations
	get_florabank_taxon_ifbl_year
	get_florabank_traits
	get_inboveg_classification
	get_inboveg_header
	get_inboveg_layer_cover
	get_inboveg_layer_qualifier
	get_inboveg_ppa
	get_inboveg_qualifier
	get_inboveg_recording
	get_inboveg_relation_recording
	get_inboveg_survey
	get_meetnetten_locations
	get_meetnetten_observations
	get_meetnetten_schemes
	get_meetnetten_visits
	get_taxonlijsten_features
	get_taxonlijsten_items
	get_taxonlijsten_lists
	Index

