Title: | Process Data for the Project Tracking Invasive Alien Species (TrIAS) |
---|---|
Description: | This package provides functionality to facilitate the data processing for the project Tracking Invasive Alien Species (TrIAS <http://trias-project.be>). |
Authors: | Damiano Oldoni [aut, cre] , Soria Delva [aut] , Tim Adriaens [ctb] , Peter Desmet [ctb] , Sander Devisscher [aut] , Stijn Van Hoey [ctb] , Pieter Huybrechts [ctb] , Machteld Varewyck [aut] , Research Institute for Nature and Forest (INBO) [cph, fnd] (https://www.vlaanderen.be/inbo/en-gb/), TrIAS [fnd] (https://trias-project.be), LIFE RIPARIAS [fnd] (https://www.riparias.be), European Union's Horizon Europe Research and Innovation Programme (ID No 101059592) [fnd] (https://b-cubed.eu/) |
Maintainer: | Damiano Oldoni <[email protected]> |
License: | MIT + file LICENSE |
Version: | 3.0.1 |
Built: | 2024-12-18 05:56:57 UTC |
Source: | https://github.com/trias-project/trias |
This function defines and applies some decision rules to assess emerging status at a specific time.
apply_decision_rules( df, y_var = "ncells", eval_year, year = "year", taxonKey = "taxonKey" )
apply_decision_rules( df, y_var = "ncells", eval_year, year = "year", taxonKey = "taxonKey" )
df |
df. A dataframe containing temporal data of one or more taxa. The column with taxa can be of class character, numeric or integers. |
y_var |
character. Name of column of |
eval_year |
numeric. Temporal value at which emerging status has to be
evaluated. |
year |
character. Name of column of |
taxonKey |
character. Name of column of |
Based on the decision rules output we define the emergency status value,
em
:
dr_3
is TRUE
: em = 0
(not emerging)
dr_1
and dr_3
are FALSE
, dr_2
and dr_4
are TRUE
: em = 3
(emerging)
dr_2
is TRUE
, all others are FALSE
: em = 2
(potentially emerging
(dr_1
is TRUE
and dr_3
is FALSE
) or (dr_1
, dr_2
and dr_3
are
FALSE
): em = 1
(unclear)
df. A dataframe (tibble) containing emerging status. Columns:
taxonKey
: column containing taxon ID. Column name
equal to value of argument taxonKey
.
year
: column
containing temporal values. Column name equal to value of argument
year
. Column itself is equal to value of argument eval_year
.
So, if you apply decision rules on years 2018 (eval_year = 2018
),
you will get 2018 in this column.
em_status
: numeric.
Emerging status, an integer between 0 and 3, based on output of decision
rules (next columns). See details for more information.
dr_1
: logical. Output of decision rule
1 answers to the question: does the time series contain only one positive
value at evaluation year?
dr_2
: logical. Output of decision
rule 2 answers to the question: is value at evaluation year above median
value?
dr_3
: logical. Output of decision rule 3 answers to
the question: does the time series contains only zeros in the five years
before eval_year
?
dr_4
: logical. Output of decision
rule 4 answers to the question: is the value in column y_var
the
maximum ever observed up to eval_year
?
df <- dplyr::tibble( taxonID = c(rep(1008955, 10), rep(2493598, 3)), y = c(seq(2009, 2018), seq(2016, 2018)), obs = c(1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0) ) apply_decision_rules(df, eval_year = 2016, y_var = "obs", taxonKey = "taxonID", year = "y" )
df <- dplyr::tibble( taxonID = c(rep(1008955, 10), rep(2493598, 3)), y = c(seq(2009, 2018), seq(2016, 2018)), obs = c(1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0) ) apply_decision_rules(df, eval_year = 2016, y_var = "obs", taxonKey = "taxonID", year = "y" )
This function applies generalized additive models (GAM) to assess emerging status for a certain time window.
apply_gam( df, y_var, eval_years, year = "year", taxonKey = "taxonKey", type_indicator = "observations", baseline_var = NULL, p_max = 0.1, taxon_key = NULL, name = NULL, df_title = NULL, x_label = "year", y_label = "Observations", saveplot = FALSE, dir_name = NULL, width = NULL, height = NULL, verbose = FALSE )
apply_gam( df, y_var, eval_years, year = "year", taxonKey = "taxonKey", type_indicator = "observations", baseline_var = NULL, p_max = 0.1, taxon_key = NULL, name = NULL, df_title = NULL, x_label = "year", y_label = "Observations", saveplot = FALSE, dir_name = NULL, width = NULL, height = NULL, verbose = FALSE )
df |
df. A dataframe containing temporal data. |
y_var |
character. Name of column containing variable to model. It has
to be passed as string, e.g. |
eval_years |
numeric. Temporal value(s) when emerging status has to be evaluated. |
year |
character. Name of column containing temporal values. It has to
be passed as string, e.g. |
taxonKey |
character. Name of column containing taxon IDs. It has to be
passed as string, e.g. |
type_indicator |
character. One of |
baseline_var |
character. Name of the column containing values to use as
additional covariate. Such covariate is introduced in the model to correct
research effort bias. Default: |
p_max |
numeric. A value between 0 and 1. Default: 0.1. |
taxon_key |
numeric, character. Taxon key the timeseries belongs to.
Used exclusively in graph title and filename (if |
name |
character. Species name the timeseries belongs to. Used
exclusively in graph title and filename (if |
df_title |
character. Any string you would like to add to graph titles
and filenames (if |
x_label |
character. x-axis label of output plot. Default: |
y_label |
character. y-axis label of output plot. Default: |
saveplot |
logical. If |
dir_name |
character. Path of directory where saving plots. If path
doesn't exists, directory will be created. Example: "./output/graphs/". If
|
width |
numeric. Plot width in pixels. Values are passed to
ggsave. Ignored if |
height |
numeric. Plot height in pixels. Values are passed to
ggsave. Ignored if |
verbose |
logical. If |
The GAM modelling is performed using the mgcvb::gam()
. To use this
function, we pass:
a formula
a family object specifying the distribution
a smoothing parameter estimation method
For more information about all other arguments, see [mgcv::gam()]
.
If no covariate is used (baseline_var
= NULL), the GAM formula is: n ~ s(year, k = maxk, m = 3, bs = "tp")
. Otherwise the GAM formula has a
second term, s(n_covariate)
and so the GAM formula is n ~ s(year, k = maxk, m = 3, bs = "tp") + s(n_covariate)
.
Description of the parameters present in the formula above:
k
: dimension of the basis used to represent the smooth term, i.e. the
number of knots used for calculating the smoother. We #' set k
to
maxk
, which is the number of decades in the time series. If less than 5
decades are present in the data, maxk
is #' set to 5.
bs
indicates the basis to use for the smoothing: we uses the default
penalized thin plate regression splines.
m
specifies the order of the derivatives in the thin plate spline
penalty. We use m = 3
, the default value.
We use [mgcv::nb()]
, a negative binomial family to perform the GAM.
The smoothing parameter estimation method is set to REML (Restricted
maximum likelihood approach). If the P-value of the GAM smoother(s) is/are
above threshold value p_max
, GAM is not performed and the next warning is
returned: "GAM output cannot be used: p-values of all GAM smoothers are
above {p_max}" where p_max
is the P-value used as threshold as defined
by argument p_max
.
If the mgcv::gam()
returns an error or a warning, the following message
is returned to the user: "GAM ({method_em}) cannot be performed or cannot
converge.", where method_em
is one of "basic"
or "correct_baseline"
.
See argument baseline_var
.
The first and second derivatives of the smoother is calculated using
function gratia::derivatives()
with the following hard coded arguments:
type
: the type of finite difference used. Set to "central"
.
order
: 1 for the first derivative, 2 for the second derivative
level
: the confidence level. Set to 0.8
eps
: the finite difference. Set to 1e-4.
For more details, please check derivatives.
The sign of the lower and upper confidence levels of the first and second
derivatives are used to define a detailed emergency status (em
) which is
internally used to return the emergency status, em_status
, which is a
column of the returned data.frame em_summary
.
ucl-1 | lcl-1 | ucl-2 | lcl-2 | em | em_status |
+ | + | + | + | 4 | 3 (emerging) |
+ | + | + | - | 3 | 3 (emerging) |
+ | + | - | - | 2 | 2 (potentially emerging) |
- | + | + | + | 1 | 2 (potentially emerging) |
+ | - | + | - | 0 | 1 (unclear) |
+ | - | - | - | -1 | 0 (not emerging) |
- | - | + | + | -2 | 0 (not emerging) |
- | - | + | - | -3 | 0 (not emerging) |
- | - | - | - | -4 | 0 (not emerging) |
list with six slots:
em_summary
: df. A data.frame summarizing the emerging status
outputs. em_summary
contains as many rows as the length of input variable
eval_year
. So, if you evaluate GAM on three years, em_summary
will
contain three rows. It contains the following columns:
"taxonKey"
: column containing taxon ID. Column name equal to value of
argument taxonKey
.
"year"
: column containing temporal values. Column name equal
to value of argument year
. Column itself is equal to value of
argument eval_years
. So, if you evaluate GAM on years 2017, 2018
(eval_years = c(2017, 2018)
), you will get these two values in this
column.
em_status
: numeric. Emerging statuses, an integer
between 0 and 3.
growth
: numeric. Lower limit of GAM confidence interval for the first
derivative, if positive. It represents the lower guaranteed growth.
method
: character. GAM method, One of: "correct_baseline"
and
"basic"
. See details above in description of argument use_baseline
.
model
: gam object. The model as returned by gam()
function.
NULL
if GAM cannot be applied.
output
: df. Complete data.frame containing more details than the
summary em_summary
. It contains the following columns:
all columns in df
.
method
: character. GAM method, One of: "correct_baseline"
and
"basic"
. See details above in description of argument use_baseline
.
fit
: numeric. Fit values.
ucl
: numeric. The upper confidence level values.
lcl
: numeric. The lower confidence level values.
em1
: numeric. The emergency value for the 1st derivative. -1, 0 or +1.
em2
: numeric. The emergency value for the 2nd derivative: -1, 0 or +1.
em
: numeric. The emergency value: from -4 to +4, based on em1
and
em2
. See Details.
em_status
: numeric. Emerging statuses, an integer
between 0 and 3. See Details.
growth
: numeric. Lower limit of GAM confidence interval for the first
derivative, if positive. It represents the lower guaranteed growth.
first_derivative
: df. Data.frame with details of first derivatives.
It contains the following columns:
smooth
: smooth identifier. Example: s(year)
.
derivative
: numeric. Value of first derivative.
se
: numeric. Standard error of derivative
.
crit
: numeric. Critical value required such that
derivative + (se * crit)
and derivative - (se * crit)
form
the upper and lower bounds of the confidence interval on the first
derivative of the estimated smooth at the specific confidence level. In our
case the confidence level is hard-coded: 0.8.
Then crit <- qnorm(p = (1-0.8)/2, mean = 0, sd = 1, lower.tail = FALSE)
.
lower_ci
: numeric. Lower bound of the confidence interval of the
estimated smooth.
upper_ci
: numeric. Upper bound of the
confidence interval of the estimated smooth.
value of argument year
: column with temporal values.
value of argument baseline_var
: column with the fitted values for the
baseline. If baseline_var
is NULL
, this column is not present.
second_derivative
: df. Data.frame with details of second
derivatives. Same columns as first_derivatives
.
plot
: a ggplot2 object. Plot of observations with GAM output and
emerging status. If emerging status cannot be assessed only observations are
plotted.
library(dplyr) df_gam <- tibble( taxonKey = rep(3003709, 24), canonicalName = rep("Rosa glauca", 24), year = seq(1995, 2018), n = c( 1, 1, 0, 0, 0, 2, 0, 0, 1, 3, 1, 2, 0, 5, 0, 5, 4, 2, 1, 1, 3, 3, 8, 10 ), n_class = c( 229, 555, 1116, 939, 919, 853, 442, 532, 623, 1178, 732, 371, 1053, 1001, 1550, 1142, 1076, 1310, 922, 1773, 1637, 1866, 2234, 2013 ) ) # apply GAM to n without baseline as covariate apply_gam(df_gam, y_var = "n", eval_years = 2018, taxon_key = 3003709, name = "Rosa glauca", verbose = TRUE ) # apply GAM using baseline data in column n_class as covariate apply_gam(df_gam, y_var = "n", eval_years = 2018, baseline_var = "n_class", taxon_key = 3003709, name = "Rosa glauca", verbose = TRUE ) # apply GAM using n as occupancy values, evaluate on two years. No baseline apply_gam(df_gam, y_var = "n", eval_years = c(2017, 2018), taxon_key = 3003709, type_indicator = "occupancy", name = "Rosa glauca", y_label = "occupancy", verbose = TRUE ) # apply GAM using n as occupancy values and n_class as covariate (baseline) apply_gam(df_gam, y_var = "n", eval_years = c(2017, 2018), baseline_var = "n_class", taxon_key = 3003709, type_indicator = "occupancy", name = "Rosa glauca", y_label = "occupancy", verbose = TRUE ) # How to use other arguments apply_gam(df_gam, y_var = "n", eval_years = c(2017, 2018), baseline_var = "n_class", p_max = 0.3, taxon_key = "3003709", type_indicator = "occupancy", name = "Rosa glauca", df_title = "Belgium", x_label = "time (years)", y_label = "area of occupancy (km2)", saveplot = TRUE, dir_name = "./data/", verbose = TRUE ) # warning returned if GAM cannot be applied and plot with only observations df_gam <- tibble( taxonKey = rep(3003709, 24), canonicalName = rep("Rosa glauca", 24), year = seq(1995, 2018), obs = c( 1, 1, 0, 0, 0, 2, 0, 0, 1, 3, 1, 2, 0, 5, 0, 5, 4, 2, 1, 1, 3, 3, 8, 10 ), cobs = rep(0, 24) ) # if GAM cannot be applied a warning is returned and the plot mention it ## Not run: no_gam_applied <- apply_gam(df_gam, y_var = "obs", eval_years = 2018, taxon_key = 3003709, name = "Rosa glauca", baseline_var = "cobs", verbose = TRUE ) no_gam_applied$plot ## End(Not run)
library(dplyr) df_gam <- tibble( taxonKey = rep(3003709, 24), canonicalName = rep("Rosa glauca", 24), year = seq(1995, 2018), n = c( 1, 1, 0, 0, 0, 2, 0, 0, 1, 3, 1, 2, 0, 5, 0, 5, 4, 2, 1, 1, 3, 3, 8, 10 ), n_class = c( 229, 555, 1116, 939, 919, 853, 442, 532, 623, 1178, 732, 371, 1053, 1001, 1550, 1142, 1076, 1310, 922, 1773, 1637, 1866, 2234, 2013 ) ) # apply GAM to n without baseline as covariate apply_gam(df_gam, y_var = "n", eval_years = 2018, taxon_key = 3003709, name = "Rosa glauca", verbose = TRUE ) # apply GAM using baseline data in column n_class as covariate apply_gam(df_gam, y_var = "n", eval_years = 2018, baseline_var = "n_class", taxon_key = 3003709, name = "Rosa glauca", verbose = TRUE ) # apply GAM using n as occupancy values, evaluate on two years. No baseline apply_gam(df_gam, y_var = "n", eval_years = c(2017, 2018), taxon_key = 3003709, type_indicator = "occupancy", name = "Rosa glauca", y_label = "occupancy", verbose = TRUE ) # apply GAM using n as occupancy values and n_class as covariate (baseline) apply_gam(df_gam, y_var = "n", eval_years = c(2017, 2018), baseline_var = "n_class", taxon_key = 3003709, type_indicator = "occupancy", name = "Rosa glauca", y_label = "occupancy", verbose = TRUE ) # How to use other arguments apply_gam(df_gam, y_var = "n", eval_years = c(2017, 2018), baseline_var = "n_class", p_max = 0.3, taxon_key = "3003709", type_indicator = "occupancy", name = "Rosa glauca", df_title = "Belgium", x_label = "time (years)", y_label = "area of occupancy (km2)", saveplot = TRUE, dir_name = "./data/", verbose = TRUE ) # warning returned if GAM cannot be applied and plot with only observations df_gam <- tibble( taxonKey = rep(3003709, 24), canonicalName = rep("Rosa glauca", 24), year = seq(1995, 2018), obs = c( 1, 1, 0, 0, 0, 2, 0, 0, 1, 3, 1, 2, 0, 5, 0, 5, 4, 2, 1, 1, 3, 3, 8, 10 ), cobs = rep(0, 24) ) # if GAM cannot be applied a warning is returned and the plot mention it ## Not run: no_gam_applied <- apply_gam(df_gam, y_var = "obs", eval_years = 2018, taxon_key = 3003709, name = "Rosa glauca", baseline_var = "cobs", verbose = TRUE ) no_gam_applied$plot ## End(Not run)
This function creates a set of climate matching outputs for a species or set of species for a region or nation.
climate_match( region, taxon_key, zip_file, scenario = "all", n_limit, cm_limit, coord_unc, BasisOfRecord, maps = TRUE )
climate_match( region, taxon_key, zip_file, scenario = "all", n_limit, cm_limit, coord_unc, BasisOfRecord, maps = TRUE )
region |
(optional character) the full name of the target nation or region region can also be a custom region (sf object). |
taxon_key |
(character or vector) containing GBIF - taxonkey(s) |
zip_file |
(optional character) The path (inclu. extension) of a zipfile from a previous GBIF-download. This zipfile should contain data of the species specified by the taxon_key |
scenario |
(character) the future scenarios we are interested in. (default) all future scenarios are used. |
n_limit |
(optional numeric) the minimal number of total observations a species must have to be included in the outputs |
cm_limit |
(optional numeric) the minimal percentage of the total number of observations within the climate zones of the region a species must have to be included in the outputs |
coord_unc |
(optional numeric) the maximal coordinate uncertainty a observation can have to be included in the analysis |
BasisOfRecord |
(optional character) an additional filter for observations based on the GBIF field "BasisOfRecord" |
maps |
(boolean) indicating whether the maps should be created. (default) TRUE, the maps are created. |
list with:
unfiltered
: a dataframe containing a summary per species and climate classification.
The climate classification is a result of a
overlay of the observations, filtered by coord_unc & BasisOfRecord, with the
climate at the time of observation
cm
: a dataframe containing the per scenario overlap with the future
climate scenarios for the target nation or region and based on the unfiltered
dataframe
filtered
: the climate match dataframe on which the n_limit &
climate_limit thresholds have been applied
future
: a dataframe containing a list per scenario of future climate
zones in the target nation or region
spatial
a sf object containing the observations used
in the analysis
current_map
a leaflet object displaying the degree of worldwide
climate match with the climate from 1980 till 2016
future_maps
a list of leaflet objects for each future climate
scenario, displaying the degree of climate match
single_species_maps
a list of leaflet objects per taxon_key displaying
the current and future climate scenarios
## Not run: region <- "europe" # provide GBIF taxon_key(s) taxon_key <- c(2865504, 5274858) # download zip_file from GBIF # goto https://www.gbif.org/occurrence/download/0001221-210914110416597 zip_file <- "./<path to zip_file>/0001221-210914110416597.zip" # calculate all climate match outputs # with GBIF download climate_match(region, taxon_key, n_limit = 90, cm_limit = 0.2 ) # calculate only data climate match outputs # using a pre-downloaded zip_file climate_match(region, taxon_key, zip_file, n_limit = 90, cm_limit = 0.2, maps = FALSE ) # calculate climate match outputs based # on human observations with a 100m # coordinate uncertainty climate_match(region, taxon_key, zip_file, n_limit = 90, cm_limit = 0.2, coord_unc = 100, BasisOfRecord = "HUMAN_OBSERVATION", maps = FALSE ) ## End(Not run)
## Not run: region <- "europe" # provide GBIF taxon_key(s) taxon_key <- c(2865504, 5274858) # download zip_file from GBIF # goto https://www.gbif.org/occurrence/download/0001221-210914110416597 zip_file <- "./<path to zip_file>/0001221-210914110416597.zip" # calculate all climate match outputs # with GBIF download climate_match(region, taxon_key, n_limit = 90, cm_limit = 0.2 ) # calculate only data climate match outputs # using a pre-downloaded zip_file climate_match(region, taxon_key, zip_file, n_limit = 90, cm_limit = 0.2, maps = FALSE ) # calculate climate match outputs based # on human observations with a 100m # coordinate uncertainty climate_match(region, taxon_key, zip_file, n_limit = 90, cm_limit = 0.2, coord_unc = 100, BasisOfRecord = "HUMAN_OBSERVATION", maps = FALSE ) ## End(Not run)
These sf objects contain future worldwide climate classifications for different year intervals.
Future scenarios are dependent on several variables like pollution levels.
Currently the future
datapackage contains the following scenarios:
A1FI: from Rubel & Kottek 2010, quick economic and technological growth through intensive use of fossil fuel
Beck: from Beck et al. 2018, high emissions
future
future
future
is a list of 5 sf objects:
2001-2025-A1F1
: A1FI scenario for the possible climate between 2001 and 2025
2026-2050-A1FI
: A1FI scenario for the possible climate between 2026 and 2050
2051-2075-A1FI
: A1FI scenario for the possible climate between 2051 and 2075
2076-2100-A1FI
: A1FI scenario for the possible climate between 2076 and 2100
2071-2100_Beck
: Beck scenario for the possible climate between 2071 and 2100
Each sf object contains 3 variables:
ID
: polygon identifier
GRIDCODE
: grid value corresponding to a climate zone
geometry
: the coordinates that define the polygon's shape
Rubel & Kottek 2010 and Beck et al. 2018.
Other climate data:
legends
,
observed
This function retrieves taxa information from GBIF. It is a higher level function built
on rgbif functions name_usage()
and name_lookup()
.
gbif_get_taxa( taxon_keys = NULL, checklist_keys = NULL, origin = NULL, limit = NULL )
gbif_get_taxa( taxon_keys = NULL, checklist_keys = NULL, origin = NULL, limit = NULL )
taxon_keys |
(single numeric or character or a vector) a single key or a
vector of keys. Not to use together with |
checklist_keys |
(single character or a vector) a datasetKey (character)
or a vector of datasetkeys. Not to use together with |
origin |
(single character or a vector) filter by origin.
It can take many inputs, and treated as OR (e.g., a or b or c)
To be used only in combination with |
limit |
With taxon_keys: limit number of taxa. With checklist_keys: limit number of taxa per each dataset. A warning is given if limit is higher than the length of taxon_keys or number of records in the checklist_keys (if string) or any of the checklist_keys (if vector) |
A data.frame with all returned attributes for any taxa
## Not run: # A single numeric taxon_keys gbif_get_taxa(taxon_keys = 1) # A single character taxon_keys gbif_get_taxa(taxon_keys = "1") # Multiple numeric taxon_keys (vector) gbif_get_taxa(taxon_keys = c(1, 2, 3, 4, 5, 6)) # Multiple character taxon_keys (vector) gbif_get_taxa(taxon_keys = c("1", "2", "3", "4", "5", "6")) # Limit number of taxa (coupled with taxon_keys) gbif_get_taxa(taxon_keys = c(1, 2, 3, 4, 5, 6), limit = 3) # A single checklist_keys (character) gbif_get_taxa(checklist_keys = "b3fa7329-a002-4243-a7a7-cd066092c9a6") # Multiple checklist_keys (vector) gbif_get_taxa(checklist_keys = c( "e4746398-f7c4-47a1-a474-ae80a4f18e92", "b3fa7329-a002-4243-a7a7-cd066092c9a6" )) # Limit number of taxa (coupled with checklist_keys) gbif_get_taxa( checklist_keys = c( "e4746398-f7c4-47a1-a474-ae80a4f18e92", "b3fa7329-a002-4243-a7a7-cd066092c9a6" ), limit = 30 ) # Filter by origin gbif_get_taxa( checklist_keys = "9ff7d317-609b-4c08-bd86-3bc404b77c42", origin = "source", limit = 3000 ) gbif_get_taxa( checklist_keys = "9ff7d317-609b-4c08-bd86-3bc404b77c42", origin = c("source", "denormed_classification"), limit = 3000 ) ## End(Not run)
## Not run: # A single numeric taxon_keys gbif_get_taxa(taxon_keys = 1) # A single character taxon_keys gbif_get_taxa(taxon_keys = "1") # Multiple numeric taxon_keys (vector) gbif_get_taxa(taxon_keys = c(1, 2, 3, 4, 5, 6)) # Multiple character taxon_keys (vector) gbif_get_taxa(taxon_keys = c("1", "2", "3", "4", "5", "6")) # Limit number of taxa (coupled with taxon_keys) gbif_get_taxa(taxon_keys = c(1, 2, 3, 4, 5, 6), limit = 3) # A single checklist_keys (character) gbif_get_taxa(checklist_keys = "b3fa7329-a002-4243-a7a7-cd066092c9a6") # Multiple checklist_keys (vector) gbif_get_taxa(checklist_keys = c( "e4746398-f7c4-47a1-a474-ae80a4f18e92", "b3fa7329-a002-4243-a7a7-cd066092c9a6" )) # Limit number of taxa (coupled with checklist_keys) gbif_get_taxa( checklist_keys = c( "e4746398-f7c4-47a1-a474-ae80a4f18e92", "b3fa7329-a002-4243-a7a7-cd066092c9a6" ), limit = 30 ) # Filter by origin gbif_get_taxa( checklist_keys = "9ff7d317-609b-4c08-bd86-3bc404b77c42", origin = "source", limit = 3000 ) gbif_get_taxa( checklist_keys = "9ff7d317-609b-4c08-bd86-3bc404b77c42", origin = c("source", "denormed_classification"), limit = 3000 ) ## End(Not run)
This function compares GBIF distribution information based on a single taxon
key with user requests and returns a logical (TRUE or FALSE). Comparison is
case insensitive. User properties for each term are treated as OR.
It is a function built on rgbif function name_usage()
.
gbif_has_distribution(taxon_key, ...)
gbif_has_distribution(taxon_key, ...)
taxon_key |
(single numeric or character) a single taxon key. |
... |
one or more GBIF distribution properties and related values. Up to now it supports the following properties: country (and its synonym: countryCode), status (and its synonym: occurrenceStatus) and establishmentMeans. |
a logical, TRUE or FALSE.
## Not run: # IMPORTANT! # examples could fail as long as `status` (`occurrenceStatus`) is used due to # an issue of the GBIF API: see https://github.com/gbif/gbif-api/issues/94 # numeric taxonKey, atomic parameters gbif_has_distribution(145953242, country = "BE", status = "PRESENT", establishmentMeans = "INTRODUCED" ) # character taxonKey, distribution properties as vectors, treated as OR gbif_has_distribution("145953242", country = c("NL", "BE"), status = c("PRESENT", "DOUBTFUL") ) # use alternative names: countryCode, occurrenceStatus. # Function works. Warning is given. gbif_has_distribution("145953242", countryCode = c("NL", "BE"), occurrenceStatus = c("PRESENT", "DOUBTFUL") ) # Case insensitive gbif_has_distribution("145953242", country = "be", status = "PRESENT", establishmentMeans = "InTrOdUcEd" ) ## End(Not run)
## Not run: # IMPORTANT! # examples could fail as long as `status` (`occurrenceStatus`) is used due to # an issue of the GBIF API: see https://github.com/gbif/gbif-api/issues/94 # numeric taxonKey, atomic parameters gbif_has_distribution(145953242, country = "BE", status = "PRESENT", establishmentMeans = "INTRODUCED" ) # character taxonKey, distribution properties as vectors, treated as OR gbif_has_distribution("145953242", country = c("NL", "BE"), status = c("PRESENT", "DOUBTFUL") ) # use alternative names: countryCode, occurrenceStatus. # Function works. Warning is given. gbif_has_distribution("145953242", countryCode = c("NL", "BE"), occurrenceStatus = c("PRESENT", "DOUBTFUL") ) # Case insensitive gbif_has_distribution("145953242", country = "be", status = "PRESENT", establishmentMeans = "InTrOdUcEd" ) ## End(Not run)
This function performs three checks:
keys
are valid GBIF taxon keys. That means that adding a key
at the end of the URL https://www.gbif.org/species/ returns a GBIF page
related to a taxa.
keys
are taxon keys of the GBIF Backbone Taxonomy checklist.
That means that adding a key at the end of the URL
https://www.gbif.org/species/ returns a GBIF page related to a taxa of the
GBIF Backbone.)
keys
are synonyms of other taxa (taxonomicStatus neither
ACCEPTED
nor DOUBTFUL
).
gbif_verify_keys(keys, col_keys = "key")
gbif_verify_keys(keys, col_keys = "key")
keys |
(character or numeric) a vector, a list, or a data.frame containing the keys to verify. |
col_keys |
(character) name of column containing keys in case
|
a data.frame with the following columns:
key
: (numeric) keys as input keys.
is_taxonKey
: (logical) is the key a valid GBIF taxon key?
is_from_gbif_backbone
: (logical) is the key a valid taxon key from
GBIF Backbone Taxonomy checklist?
is_synonym
: (logical) is the key related to a synonym (not
ACCEPTED
or DOUBTFUL
)?
If a key didn't pass the first check (is_taxonKey
= FALSE
) then
NA
for other two columns. If a key didn't pass the second check
(is_from_gbif_backbone
= FALSE
) then is_synonym
= NA
.
## Not run: # input is a vector keys1 <- c( "12323785387253", # invalid GBIF taxonKey "128545334", # valid taxonKey, not a GBIF Backbone key "1000693", # a GBIF Backbone key, synonym "1000310", # a GBIF Backbone key, accepted NA, NA ) # input is a df keys2 <- data.frame( keys = keys1, other_col = sample.int(40, size = length(keys1)), stringsAsFactors = FALSE ) # input is a named list keys3 <- keys1 names(keys3) <- purrr::map_chr( c(1:length(keys3)), ~ paste(sample(c(0:9, letters, LETTERS), 3), collapse = "" ) ) # input keys are numeric keys4 <- as.numeric(keys1) gbif_verify_keys(keys1) gbif_verify_keys(keys2, col_keys = "keys") gbif_verify_keys(keys3) gbif_verify_keys(keys4) ## End(Not run)
## Not run: # input is a vector keys1 <- c( "12323785387253", # invalid GBIF taxonKey "128545334", # valid taxonKey, not a GBIF Backbone key "1000693", # a GBIF Backbone key, synonym "1000310", # a GBIF Backbone key, accepted NA, NA ) # input is a df keys2 <- data.frame( keys = keys1, other_col = sample.int(40, size = length(keys1)), stringsAsFactors = FALSE ) # input is a named list keys3 <- keys1 names(keys3) <- purrr::map_chr( c(1:length(keys3)), ~ paste(sample(c(0:9, letters, LETTERS), 3), collapse = "" ) ) # input keys are numeric keys4 <- as.numeric(keys1) gbif_verify_keys(keys1) gbif_verify_keys(keys2, col_keys = "keys") gbif_verify_keys(keys3) gbif_verify_keys(keys4) ## End(Not run)
Function to get number of taxa introduced by different pathways. Possible breakpoints: taxonomic (kingdom + vertebrates/invertebrates), temporal (lower limit year).
get_table_pathways( df, category = NULL, from = NULL, n_species = 5, kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", species_names = "canonicalName" )
get_table_pathways( df, category = NULL, from = NULL, n_species = 5, kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", species_names = "canonicalName" )
df |
df. |
category |
NULL or character. One of the kingdoms as given in GBIF:
It can also be one of the following not kingdoms: #'
|
from |
NULL or numeric. Year trade-off: if not |
n_species |
numeric. The maximum number of species to return as examples
per pathway. For groups with less species than |
kingdom_names |
character. Name of the column of |
phylum_names |
character. Name of the column of |
first_observed |
character. Name of the column of |
species_names |
character. Name of the column of |
a data.frame with 4 columns: pathway_level1
, pathway_level2
, n
(number of taxa) and examples
.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "NA", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), acceptedKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) get_table_pathways(data) # Specify kingdom get_table_pathways(data, "Plantae") # with special categories, `Chordata` or `not Chordata` get_table_pathways(data, "Chordata") get_table_pathways(data, "Not Chordata") # From 2000 get_table_pathways(data, from = 2000, first_observed = "first_observed") # Specify number of species to include in examples get_table_pathways(data, "Plantae", n_species = 8) # Specify columns containing kingdom and species names get_table_pathways(data, "Plantae", n_species = 8, kingdom_names = "kingdom", species_names = "canonicalName" ) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "NA", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), acceptedKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) get_table_pathways(data) # Specify kingdom get_table_pathways(data, "Plantae") # with special categories, `Chordata` or `not Chordata` get_table_pathways(data, "Chordata") get_table_pathways(data, "Not Chordata") # From 2000 get_table_pathways(data, from = 2000, first_observed = "first_observed") # Specify number of species to include in examples get_table_pathways(data, "Plantae", n_species = 8) # Specify columns containing kingdom and species names get_table_pathways(data, "Plantae", n_species = 8, kingdom_names = "kingdom", species_names = "canonicalName" ) ## End(Not run)
Calculate how many new species has been introduced in a year.
indicator_introduction_year( df, start_year_plot = 1920, smooth_span = 0.85, x_major_scale_stepsize = 10, x_minor_scale_stepsize = 5, facet_column = NULL, taxon_key_col = "key", first_observed = "first_observed", x_lab = "Year", y_lab = "Number of introduced alien species" )
indicator_introduction_year( df, start_year_plot = 1920, smooth_span = 0.85, x_major_scale_stepsize = 10, x_minor_scale_stepsize = 5, facet_column = NULL, taxon_key_col = "key", first_observed = "first_observed", x_lab = "Year", y_lab = "Number of introduced alien species" )
df |
A data frame. |
start_year_plot |
Year where the plot starts from. Default: 1920. |
smooth_span |
(numeric) Parameter for the applied
|
x_major_scale_stepsize |
(integer) Parameter that indicates the breaks of the x axis. Default: 10. |
x_minor_scale_stepsize |
(integer) Parameter that indicates the minor breaks of the x axis. Default: 5. |
facet_column |
NULL or character. The column to use to create additional
facet wrap plots underneath the main graph. When NULL, no facet graph are
created. Valid facet options: |
taxon_key_col |
character. Name of the column of |
first_observed |
character. Name of the column of |
x_lab |
NULL or character. to set or remove the x-axis label. |
y_lab |
NULL or character. to set or remove the y-axis label. |
A list with three slots:
plot
: ggplot2 object (or egg object if facets are used).
data_top_graph
: data.frame (tibble) with data used for the main plot (top graph) in plot
.
data_facet_graph
: data.frame (tibble) with data used for the faceting
plot in plot
. If facet_column
is NULL, NULL is returned.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # without facets indicator_introduction_year(data) # specify start year and smoother parameter indicator_introduction_year(data, start_year_plot = 1940, smooth_span = 0.6 ) # with facets indicator_introduction_year(data, facet_column = "kingdom") # specify columns with year of first observed indicator_introduction_year(data, first_observed = "first_observed" ) # specify axis labels indicator_introduction_year(data, x_lab = "YEAR", y_lab = NULL) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # without facets indicator_introduction_year(data) # specify start year and smoother parameter indicator_introduction_year(data, start_year_plot = 1940, smooth_span = 0.6 ) # with facets indicator_introduction_year(data, facet_column = "kingdom") # specify columns with year of first observed indicator_introduction_year(data, first_observed = "first_observed" ) # specify axis labels indicator_introduction_year(data, x_lab = "YEAR", y_lab = NULL) ## End(Not run)
Based on countYearProvince plot from reporting - rshiny - grofwildjacht
indicator_native_range_year( df, years = NULL, type = c("native_range", "native_continent"), x_major_scale_stepsize = 10, x_lab = "year", y_lab = "alien species", response_type = c("absolute", "relative", "cumulative"), relative = lifecycle::deprecated(), taxon_key_col = "key", first_observed = "first_observed" )
indicator_native_range_year( df, years = NULL, type = c("native_range", "native_continent"), x_major_scale_stepsize = 10, x_lab = "year", y_lab = "alien species", response_type = c("absolute", "relative", "cumulative"), relative = lifecycle::deprecated(), taxon_key_col = "key", first_observed = "first_observed" )
df |
input data.frame. |
years |
(numeric) vector years we are interested to. If |
type |
character, native_range level of interest should be one of
|
x_major_scale_stepsize |
(integer) Parameter that indicates the breaks of the x axis. Default: 10. |
x_lab |
character string, label of the x-axis. Default: "year". |
y_lab |
character string, label of the y-axis. Default: "number of alien species". |
response_type |
(character) summary type of response to be displayed;
should be one of |
relative |
(logical) if |
taxon_key_col |
character. Name of the column of |
first_observed |
(character) Name of the column in |
list with:
static_plot
: ggplot object, for a
given species the observed number per year and per native range is plotted
in a stacked bar chart.
interactive_plot
: plotly object, for a
given species the observed number per year and per native range is plotted
in a stacked bar chart.
data
: data displayed in the plot, as a data.frame with:
year
: year at which the species were introduced.
native_range
: native range of the introduced species.
n
: number of species introduced from the native range for a given year.
total
: total number of species, from all around the world, introduced.
during a given year.
perc
: percentage of species introduced from the native range for a
given year, n
/total
*100.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) indicator_native_range_year(data, "native_continent", years = c(2010,2013)) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) indicator_native_range_year(data, "native_continent", years = c(2010,2013)) ## End(Not run)
This function calculates the cumulative number of taxa introduced per year. To do this, a column of input dataframe containing temporal information about year of introduction is required.
indicator_total_year( df, start_year_plot = 1940, x_major_scale_stepsize = 10, x_minor_scale_stepsize = 5, facet_column = NULL, taxon_key_col = "key", first_observed = "first_observed", x_lab = "Year", y_lab = "Cumulative number of alien species" )
indicator_total_year( df, start_year_plot = 1940, x_major_scale_stepsize = 10, x_minor_scale_stepsize = 5, facet_column = NULL, taxon_key_col = "key", first_observed = "first_observed", x_lab = "Year", y_lab = "Cumulative number of alien species" )
df |
df. Contains the data as produced by the Trias pipeline, with minimal columns. |
start_year_plot |
numeric. Limit to use as start year of the plot. For scientific usage, the entire period could be relevant, but for policy purpose, focusing on a more recent period could be required. Default: 1940. |
x_major_scale_stepsize |
integer. On which year interval labels are placed on the x axis. Default: 10. |
x_minor_scale_stepsize |
integer. On which year interval minor breaks are placed on the x axis. Default: 5. |
facet_column |
NULL or character. Name of the column to use to create
additional facet wrap plots underneath the main graph. When NULL, no facet
graph is included. It is typically one of the highest taxonomic ranks, e.g.
|
taxon_key_col |
character. Name of the column of |
first_observed |
character. Name of the column of |
x_lab |
NULL or character. To personalize or remove the x-axis label. Default: "Year. |
y_lab |
NULL or character. To personalize or remove the y-axis label. Default: "Cumulative number of alien species". |
A list with three slots:
plot
: ggplot2 object (or egg object if facets are used).
data_top_graph
: data.frame (tibble) with data used for the main plot (top graph) in plot
.
data_facet_graph
: data.frame (tibble) with data used for the faceting
plot in plot
. If facet_column
is NULL, NULL is returned.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) start_year_plot <- 1900 x_major_scale_stepsize <- 25 x_minor_scale_stepsize <- 5 # without facets indicator_total_year(data, start_year_plot, x_major_scale_stepsize) # with facets indicator_total_year(data, start_year_plot, facet_column = "kingdom") # specify name of column containing year of introduction (first_observed) indicator_total_year(data, first_observed = "first_observed") # specify axis labels indicator_total_year(data, x_lab = "YEAR", y_lab = NULL) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) start_year_plot <- 1900 x_major_scale_stepsize <- 25 x_minor_scale_stepsize <- 5 # without facets indicator_total_year(data, start_year_plot, x_major_scale_stepsize) # with facets indicator_total_year(data, start_year_plot, facet_column = "kingdom") # specify name of column containing year of introduction (first_observed) indicator_total_year(data, first_observed = "first_observed") # specify axis labels indicator_total_year(data, x_lab = "YEAR", y_lab = NULL) ## End(Not run)
Legends for climate shapefiles
legends
legends
legends
contains two data.frames, KG_A1FI
and KG_Beck
,
matching Koppen-Geiger climate zones to A1FI and Beck scenarios
respectively.
Each data.frame contains two columns:
GRIDCODE
: (numeric) grid value corresponding to a climate zone
Classification
: (character) Koppen-Geiger climate classification value
Description
: (character) verbose description of the Koppen-Geiger
climate zone, e.g. "Tropical rainforest climate"
Group
: (character) group the Koppen-Geiger climate zone belongs to,
e.g. "Tropical"
Precipitation Type
: (character) Type of precipitations associated to
the climate zone, e.g. "Rainforest"
Level of Heat
: (character) Heat level associated to the climate zone,
e.g. "Cold"
Other climate data:
future
,
observed
These sf objects contain worldwide climate classifications for different year intervals.
observed
observed
observed
is a list of 5 sf objects:
1901-1925
: observed climate data from 1901 up to 1925
1925-1950
: observed climate data from 1926 up to 1950
1950- 1975
: observed climate data from 1951 up to 1975
1976-2000
: observed climate data from 1976 up to 2000
1980-2016
: observed climate data from 1980 up to 2016
Each sf object contains 3 variables:
ID
: polygon identifier
GRIDCODE
: grid value corresponding to a climate zone
geometry
: the coordinates that define the polygon's shape
These objects originate from Rubel & Kottek 2010, except the last one, with data from 1980 to 2016, which is based on Beck et al. 2018.
Other climate data:
future
,
legends
Function to get all CBD pathays of introdution at level 1 (pathway_level1
)
and level 2 (pathway_level2
). Added pathway unknown
at level 1 and level
2 for classifying taxa without pathway (at level 1 or level 2) information.
pathways_cbd()
pathways_cbd()
A tibble data.frame with 2 columns: pathway_level1
and
pathway_level2
.
Plot time series with confidence limits and emerging status
plot_ribbon_em( df_plot, x_axis = "year", y_axis = "obs", x_label = "x", y_label = "y", ptitle = NULL, verbose = FALSE )
plot_ribbon_em( df_plot, x_axis = "year", y_axis = "obs", x_label = "x", y_label = "y", ptitle = NULL, verbose = FALSE )
df_plot |
df. A data.frame containing data to plot. |
x_axis |
character. Name of column containing x-values. Default:
|
y_axis |
character. Name of column containing y-values. Default:
|
x_label |
character. x-axis label. Default: |
y_label |
character. y-axis label. Default: |
ptitle |
character. Plot title. Default: |
verbose |
logical. If |
a ggplot2 plot object.
This function opens a (tab-separated) text file containing all occurrence
downloads from GBIF and updates the status of all downloads with status
RUNNING
or PREPARING
. If the specified download is not present it will be add.
update_download_list( file, download_to_add, input_checklist, url_doi_base = "https://doi.org/" )
update_download_list( file, download_to_add, input_checklist, url_doi_base = "https://doi.org/" )
file |
text file (tab separated) containing all occurrence downloads from GBIF. File should contain the following columns:
|
download_to_add |
character. A GBIF download key to be added to file. |
input_checklist |
text file with taxon keys whose occurrences you want to download |
url_doi_base |
character. doi base URL; |
If a download key is passed which is not present in the file it will be added as a new line.
message with the performed updates
Verify taxa that the GBIF Backbone
Taxonomy does not recognize (no backbone match) or will lump under another
name (synonyms). This is done by adding a verificationKey
to the input
dataframe, populated with:
For ACCEPTED
and
DOUBTFUL
taxa: the backbone taxon key for that taxon (taxon is its own
unit and won't be lumped).
For other taxa: a manually chosen and thus verified backbone taxon key. This could either be the taxon key of:
accepted taxon suggested by GBIF: backbone synonymy is accepted and taxon will be lumped.
another accepted taxon: backbone synonymy is rejected, but taxon will be lumped under another name.
taxon itself: backbone synonymy is rejected, taxon will be considered as separate taxon.
other taxon/taxa: automatic backbone match failed, but taxon can be considered/lumped with manually found taxon/taxa (e.g. hybrid formula considered equal to its hybrid parents).
The manually chosen
verificationKey
should be provided in verification
: a dataframe
(probably read from a file) listing all checklist taxon/backbone
taxon/accepted taxon combinations that require verification. The function
will update a provided verification based on the input taxa or create a new
one if none is provided. Any changes to the verification are also provided as
ancillary information.
verify_taxa( taxa, verification = NULL, taxonKey = "taxonKey", scientificName = "scientificName", datasetKey = "datasetKey", bb_key = "bb_key", bb_scientificName = "bb_scientificName", bb_kingdom = "bb_kingdom", bb_rank = "bb_rank", bb_taxonomicStatus = "bb_taxonomicStatus", bb_acceptedKey = "bb_acceptedKey", bb_acceptedName = "bb_acceptedName", verification_taxonKey = "taxonKey", verification_scientificName = "scientificName", verification_datasetKey = "datasetKey", verification_bb_key = "bb_key", verification_bb_scientificName = "bb_scientificName", verification_bb_kingdom = "bb_kingdom", verification_bb_rank = "bb_rank", verification_bb_taxonomicStatus = "bb_taxonomicStatus", verification_bb_acceptedKey = "bb_acceptedKey", verification_bb_acceptedName = "bb_acceptedName", verification_bb_acceptedKingdom = "bb_acceptedKingdom", verification_bb_acceptedRank = "bb_acceptedRank", verification_bb_acceptedTaxonomicStatus = "bb_acceptedTaxonomicStatus", verification_verificationKey = "verificationKey", verification_remarks = "remarks", verification_verifiedBy = "verifiedBy", verification_dateAdded = "dateAdded", verification_outdated = "outdated" )
verify_taxa( taxa, verification = NULL, taxonKey = "taxonKey", scientificName = "scientificName", datasetKey = "datasetKey", bb_key = "bb_key", bb_scientificName = "bb_scientificName", bb_kingdom = "bb_kingdom", bb_rank = "bb_rank", bb_taxonomicStatus = "bb_taxonomicStatus", bb_acceptedKey = "bb_acceptedKey", bb_acceptedName = "bb_acceptedName", verification_taxonKey = "taxonKey", verification_scientificName = "scientificName", verification_datasetKey = "datasetKey", verification_bb_key = "bb_key", verification_bb_scientificName = "bb_scientificName", verification_bb_kingdom = "bb_kingdom", verification_bb_rank = "bb_rank", verification_bb_taxonomicStatus = "bb_taxonomicStatus", verification_bb_acceptedKey = "bb_acceptedKey", verification_bb_acceptedName = "bb_acceptedName", verification_bb_acceptedKingdom = "bb_acceptedKingdom", verification_bb_acceptedRank = "bb_acceptedRank", verification_bb_acceptedTaxonomicStatus = "bb_acceptedTaxonomicStatus", verification_verificationKey = "verificationKey", verification_remarks = "remarks", verification_verifiedBy = "verifiedBy", verification_dateAdded = "dateAdded", verification_outdated = "outdated" )
taxa |
df. Dataframe with at least the following (default) columns for each taxon:
|
verification |
df. Dataframe with at least the following columns for each checklist taxon/backbone taxon/accepted taxon combination:
|
taxonKey , scientificName , datasetKey , bb_key , bb_scientificName , bb_kingdom , bb_rank , bb_taxonomicStatus , bb_acceptedKey , bb_acceptedName
|
Column names of required columns of |
verification_taxonKey , verification_scientificName , verification_datasetKey , verification_bb_key , verification_bb_scientificName , verification_bb_kingdom , verification_bb_rank , verification_bb_taxonomicStatus , verification_bb_acceptedKey , verification_bb_acceptedName , verification_bb_acceptedKingdom , verification_bb_acceptedRank , verification_bb_acceptedTaxonomicStatus , verification_verificationKey , verification_remarks , verification_verifiedBy , verification_dateAdded , verification_outdated
|
Column names of required columns of |
list. List with three objects:
taxa
: df.
Provided dataframe with additional column verificationKey
.
verification
: df. New or updated dataframe with verification
information.
info
: list. Dataframes with ancillary
information regarding changes to the verification.
new_synonyms
: df. Subset of verification
with synonym
taxa found in taxa
but not in provided verification
).
new_unmatched_taxa
: df. Subset of verification
with
unmatched taxa found in taxa
but not in provided
verification
).
outdated_synonyms
: df. Subset of
verification
with synonyms found in provided verification
but
not in taxa
.
outdated_unmatched_taxa
: df. Subset of
verification
with unmatched taxa found in provided
verification
but not in taxa
.
updated_bb_scientificName
: df. bb_scientificName
s in
provided verification
that were updated
updated_bb_scientificName
in the backbone since.
updated_bb_acceptedName
: df. bb_acceptedName
s in
provided verification
that were updated
updated_bb_acceptedName
in the backbone since.
duplicates
: df. Taxa present in more than one checklist.
check_verificationKey
: df. Check if provided
verificationKey
s can be found in backbone.
## Not run: my_taxa <- data.frame( taxonKey = c( 141117238, 113794952, 141264857, 100480872, 141264614, 100220432, 141264835, 140563014, 140562956, 145953989, 148437916, 114445583, 141264849, 101790530 ), scientificName = c( "Aspius aspius", "Rana catesbeiana", "Polystichum tsus-simense J.Smith", "Apus apus (Linnaeus, 1758)", "Begonia x semperflorens hort.", "Rana catesbeiana", "Spiranthes cernua (L.) Richard x S. odorata (Nuttall) Lindley", "Atyaephyra desmaresti", "Ferrissia fragilis", "Ferrissia fragilis", "Ferrissia fragilis", "Rana blanfordii Boulenger", "Pterocarya x rhederiana C.K. Schneider", "Stenelmis williami Schmude" ), datasetKey = c( "98940a79-2bf1-46e6-afd6-ba2e85a26f9f", "e4746398-f7c4-47a1-a474-ae80a4f18e92", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "39653f3e-8d6b-4a94-a202-859359c164c5", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "b351a324-77c4-41c9-a909-f30f77268bc4", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "289244ee-e1c1-49aa-b2d7-d379391ce265", "289244ee-e1c1-49aa-b2d7-d379391ce265", "3f5e930b-52a5-461d-87ec-26ecd66f14a3", "1f3505cd-5d98-4e23-bd3b-ffe59d05d7c2", "3772da2f-daa1-4f07-a438-15a881a2142c", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "9ca92552-f23a-41a8-a140-01abaa31c931" ), bb_key = c( 2360181, 2427092, 2651108, 5228676, NA, 2427092, NA, 4309705, 2291152, 2291152, 2291152, 2430304, NA, 1033588 ), bb_scientificName = c( "Aspius aspius (Linnaeus, 1758)", "Rana catesbeiana Shaw, 1802", "Polystichum tsus-simense (Hook.) J.Sm.", "Apus apus (Linnaeus, 1758)", NA, "Rana catesbeiana Shaw, 1802", NA, "Atyaephyra desmarestii (Millet, 1831)", "Ferrissia fragilis (Tryon, 1863)", "Ferrissia fragilis (Tryon, 1863)", "Ferrissia fragilis (Tryon, 1863)", "Rana blanfordii Boulenger, 1882", NA, "Stenelmis williami Schmude" ), bb_kingdom = c( "Animalia", "Animalia", "Plantae", "Animalia", NA, "Animalia", NA, "Animalia", "Animalia", "Animalia", "Animalia", "Animalia", NA, "Animalia" ), bb_rank = c( "SPECIES", "SPECIES", "SPECIES", "SPECIES", NA, "SPECIES", NA, "SPECIES", "SPECIES", "SPECIES", "SPECIES", "SPECIES", NA, "SPECIES" ), bb_taxonomicStatus = c( "SYNONYM", "SYNONYM", "SYNONYM", "ACCEPTED", NA, "SYNONYM", NA, "HOMOTYPIC_SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", NA, "SYNONYM" ), bb_acceptedKey = c( 5851603, 2427091, 4046493, NA, NA, 2427091, NA, 6454754, 9520065, 9520065, 9520065, 2430301, NA, 1033553 ), bb_acceptedName = c( "Leuciscus aspius (Linnaeus, 1758)", "Lithobates catesbeianus (Shaw, 1802)", "Polystichum luctuosum (Kunze) Moore.", NA, NA, "Lithobates catesbeianus (Shaw, 1802)", NA, "Hippolyte desmarestii Millet, 1831", "Ferrissia californica (Rowell, 1863)", "Ferrissia californica (Rowell, 1863)", "Ferrissia californica (Rowell, 1863)", "Nanorana blanfordii (Boulenger, 1882)", NA, "Stenelmis Dufour, 1835" ), taxonID = c( "alien-fishes-checklist:taxon:c937610f85ea8a74f105724c8f198049", "88", "alien-plants-belgium:taxon:57c1d111f14fd5f3271b0da53c05c745", "4512", "alien-plants-belgium:taxon:9a6c5ed8907ff169433fe44fcbff0705", "80-syn", "alien-plants-belgium:taxon:29409d1e1adc88d6357dd0be13350d6c", "alien-macroinvertebrates-checklist:taxon:54cca150e1e0b7c0b3f5b152ae64d62b", "alien-macroinvertebrates-checklist:taxon:73f271d93128a4e566e841ea6e3abff0", "rinse-checklist:taxon:7afe7b1fbdd06cbdfe97272567825c09", "ad-hoc-checklist:taxon:32dc2e18733fffa92ba4e1b35d03c4e2", "a80caa33-da9d-48ed-80e3-f76b0b3810f9", "alien-plants-belgium:taxon:56d6564f59d9092401c454849213366f", "193729" ), stringsAsFactors = FALSE ) my_verification <- data.frame( taxonKey = c( 113794952, 141264857, 143920280, 141264835, 141264614, 140562956, 145953989, 114445583, 128897752, 101790530, 141265523 ), scientificName = c( "Rana catesbeiana", "Polystichum tsus-simense J.Smith", "Lemnaceae", "Spiranthes cernua (L.) Richard x S. odorata (Nuttall) Lindley", "Begonia x semperflorens hort.", "Ferrissia fragilis", "Ferrissia fragilis", "Rana blanfordii Boulenger", "Python reticulatus Fitzinger, 1826", "Stenelmis williami Schmude", "Veronica austriaca Jacq." ), datasetKey = c( "e4746398-f7c4-47a1-a474-ae80a4f18e92", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "e4746398-f7c4-47a1-a474-ae80a4f18e92", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "289244ee-e1c1-49aa-b2d7-d379391ce265", "3f5e930b-52a5-461d-87ec-26ecd66f14a3", "3772da2f-daa1-4f07-a438-15a881a2142c", "7ddf754f-d193-4cc9-b351-99906754a03b", "9ca92552-f23a-41a8-a140-01abaa31c931", "9ff7d317-609b-4c08-bd86-3bc404b77c42" ), bb_key = c( 2427092, 2651108, 6723, NA, NA, 2291152, 2291152, 2430304, 7587934, 1033588, NA ), bb_scientificName = c( "Rana catesbeiana Shaw, 1802", "Polystichum tsus-tsus-tsus (Hook.) Captain", "Lemnaceae", NA, NA, "Ferrissia fragilis (Tryon, 1863)", "Ferrissia fragilis (Tryon, 1863)", "Rana blanfordii Boulenger, 1882", "Python reticulatus Fitzinger, 1826", "Stenelmis williami Schmude", NA ), bb_kingdom = c( "Animalia", "Plantae", "Plantae", NA, NA, "Animalia", "Animalia", "Animalia", "Animalia", "Animalia", NA ), bb_rank = c( "SPECIES", "SPECIES", "FAMILY", NA, NA, "SPECIES", "SPECIES", "SPECIES", "SPECIES", "SPECIES", NA ), bb_taxonomicStatus = c( "SYNONYM", "SYNONYM", "SYNONYM", NA, NA, "SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", NA ), bb_acceptedKey = c( 2427091, 4046493, 6979, NA, NA, 9520065, 9520065, 2427008, 9260388, 1033553, NA ), bb_acceptedName = c( "Lithobates dummyus (Batman, 2018)", "Polystichum luctuosum (Kunze) Moore.", "Araceae", NA, NA, "Ferrissia californica (Rowell, 1863)", "Ferrissia californica (Rowell, 1863)", "Hylarana chalconota (Schlegel, 1837)", "Malayopython reticulatus (Schneider, 1801)", "Stenelmis Dufour, 1835", NA ), bb_acceptedKingdom = c( "Animalia", "Plantae", "Plantae", NA, NA, "Animalia", "Animalia", "Animalia", "Animalia", "Animalia", NA ), bb_acceptedRank = c( "SPECIES", "SPECIES", "FAMILY", NA, NA, "SPECIES", "SPECIES", "SPECIES", "SPECIES", "GENUS", NA ), bb_acceptedTaxonomicStatus = c( "ACCEPTED", "ACCEPTED", "ACCEPTED", NA, NA, "ACCEPTED", "ACCEPTED", "ACCEPTED", "ACCEPTED", "ACCEPTED", NA ), verificationKey = c( 2427091, 4046493, 6979, "2805420,2805363", NA, NA, NA, NA, 9260388, NA, 3172099 ), remarks = c( "dummy example 1: bb_acceptedName should be updated.", "dummy example 2: bb_scientificName should be updated.", "dummy example 3: not used anymore. Set outdated = TRUE.", "dummy example 4: multiple keys in verificationKey are allowed.", "dummy example 5: nothing should happen.", "dummy example 6: datasetKey should not be modified. If new taxa come in with same name from other checklsits, they should be added as new rows. Report them as duplicates in duplicates_taxa", "dummy example 7: datasetKey should not be modified. If new taxa come in with same name from other checklsits, they should be added as new rows. Report them as duplicates in duplicates_taxa", "dummy example 8: outdated synonym. Set outdated = TRUE.", "dummy example 9: outdated synonym. outdated is already TRUE. No actions.", "dummy example 10: outdated synonym. Not outdated anymore. Change outdated back to FALSE.", "dummy example 11: outdated unmatched taxa. Set outdated = TRUE." ), verifiedBy = c( "Damiano Oldoni", "Peter Desmet", "Stijn Van Hoey", "Tanja Milotic", NA, NA, NA, NA, "Lien Reyserhove", NA, "Dimitri Brosens" ), dateAdded = as.Date( c( "2018-07-01", "2018-07-01", "2018-07-01", "2018-07-16", "2018-07-16", "2018-07-01", "2018-11-20", "2018-11-29", "2018-12-01", "2018-12-02", "2018-12-03" ) ), outdated = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE ), stringsAsFactors = FALSE ) # output verify_taxa(taxa = my_taxa, verification = my_verification) verify_taxa(taxa = my_taxa) # you can also provide your own column names for one or more required columns: library(dplyr) my_taxa_other_colnames <- rename( my_taxa, checklist = datasetKey, scientific_names = scientificName ) my_verification_other_colnames <- rename( my_verification, backbone_scientific_names = bb_scientificName, backbone_accepted_names = bb_acceptedName, is_outdated = outdated, author_verification = verifiedBy ) # output verify_taxa( taxa = my_taxa_other_colnames, verification = my_verification_other_colnames ) ## End(Not run)
## Not run: my_taxa <- data.frame( taxonKey = c( 141117238, 113794952, 141264857, 100480872, 141264614, 100220432, 141264835, 140563014, 140562956, 145953989, 148437916, 114445583, 141264849, 101790530 ), scientificName = c( "Aspius aspius", "Rana catesbeiana", "Polystichum tsus-simense J.Smith", "Apus apus (Linnaeus, 1758)", "Begonia x semperflorens hort.", "Rana catesbeiana", "Spiranthes cernua (L.) Richard x S. odorata (Nuttall) Lindley", "Atyaephyra desmaresti", "Ferrissia fragilis", "Ferrissia fragilis", "Ferrissia fragilis", "Rana blanfordii Boulenger", "Pterocarya x rhederiana C.K. Schneider", "Stenelmis williami Schmude" ), datasetKey = c( "98940a79-2bf1-46e6-afd6-ba2e85a26f9f", "e4746398-f7c4-47a1-a474-ae80a4f18e92", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "39653f3e-8d6b-4a94-a202-859359c164c5", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "b351a324-77c4-41c9-a909-f30f77268bc4", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "289244ee-e1c1-49aa-b2d7-d379391ce265", "289244ee-e1c1-49aa-b2d7-d379391ce265", "3f5e930b-52a5-461d-87ec-26ecd66f14a3", "1f3505cd-5d98-4e23-bd3b-ffe59d05d7c2", "3772da2f-daa1-4f07-a438-15a881a2142c", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "9ca92552-f23a-41a8-a140-01abaa31c931" ), bb_key = c( 2360181, 2427092, 2651108, 5228676, NA, 2427092, NA, 4309705, 2291152, 2291152, 2291152, 2430304, NA, 1033588 ), bb_scientificName = c( "Aspius aspius (Linnaeus, 1758)", "Rana catesbeiana Shaw, 1802", "Polystichum tsus-simense (Hook.) J.Sm.", "Apus apus (Linnaeus, 1758)", NA, "Rana catesbeiana Shaw, 1802", NA, "Atyaephyra desmarestii (Millet, 1831)", "Ferrissia fragilis (Tryon, 1863)", "Ferrissia fragilis (Tryon, 1863)", "Ferrissia fragilis (Tryon, 1863)", "Rana blanfordii Boulenger, 1882", NA, "Stenelmis williami Schmude" ), bb_kingdom = c( "Animalia", "Animalia", "Plantae", "Animalia", NA, "Animalia", NA, "Animalia", "Animalia", "Animalia", "Animalia", "Animalia", NA, "Animalia" ), bb_rank = c( "SPECIES", "SPECIES", "SPECIES", "SPECIES", NA, "SPECIES", NA, "SPECIES", "SPECIES", "SPECIES", "SPECIES", "SPECIES", NA, "SPECIES" ), bb_taxonomicStatus = c( "SYNONYM", "SYNONYM", "SYNONYM", "ACCEPTED", NA, "SYNONYM", NA, "HOMOTYPIC_SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", NA, "SYNONYM" ), bb_acceptedKey = c( 5851603, 2427091, 4046493, NA, NA, 2427091, NA, 6454754, 9520065, 9520065, 9520065, 2430301, NA, 1033553 ), bb_acceptedName = c( "Leuciscus aspius (Linnaeus, 1758)", "Lithobates catesbeianus (Shaw, 1802)", "Polystichum luctuosum (Kunze) Moore.", NA, NA, "Lithobates catesbeianus (Shaw, 1802)", NA, "Hippolyte desmarestii Millet, 1831", "Ferrissia californica (Rowell, 1863)", "Ferrissia californica (Rowell, 1863)", "Ferrissia californica (Rowell, 1863)", "Nanorana blanfordii (Boulenger, 1882)", NA, "Stenelmis Dufour, 1835" ), taxonID = c( "alien-fishes-checklist:taxon:c937610f85ea8a74f105724c8f198049", "88", "alien-plants-belgium:taxon:57c1d111f14fd5f3271b0da53c05c745", "4512", "alien-plants-belgium:taxon:9a6c5ed8907ff169433fe44fcbff0705", "80-syn", "alien-plants-belgium:taxon:29409d1e1adc88d6357dd0be13350d6c", "alien-macroinvertebrates-checklist:taxon:54cca150e1e0b7c0b3f5b152ae64d62b", "alien-macroinvertebrates-checklist:taxon:73f271d93128a4e566e841ea6e3abff0", "rinse-checklist:taxon:7afe7b1fbdd06cbdfe97272567825c09", "ad-hoc-checklist:taxon:32dc2e18733fffa92ba4e1b35d03c4e2", "a80caa33-da9d-48ed-80e3-f76b0b3810f9", "alien-plants-belgium:taxon:56d6564f59d9092401c454849213366f", "193729" ), stringsAsFactors = FALSE ) my_verification <- data.frame( taxonKey = c( 113794952, 141264857, 143920280, 141264835, 141264614, 140562956, 145953989, 114445583, 128897752, 101790530, 141265523 ), scientificName = c( "Rana catesbeiana", "Polystichum tsus-simense J.Smith", "Lemnaceae", "Spiranthes cernua (L.) Richard x S. odorata (Nuttall) Lindley", "Begonia x semperflorens hort.", "Ferrissia fragilis", "Ferrissia fragilis", "Rana blanfordii Boulenger", "Python reticulatus Fitzinger, 1826", "Stenelmis williami Schmude", "Veronica austriaca Jacq." ), datasetKey = c( "e4746398-f7c4-47a1-a474-ae80a4f18e92", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "e4746398-f7c4-47a1-a474-ae80a4f18e92", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "9ff7d317-609b-4c08-bd86-3bc404b77c42", "289244ee-e1c1-49aa-b2d7-d379391ce265", "3f5e930b-52a5-461d-87ec-26ecd66f14a3", "3772da2f-daa1-4f07-a438-15a881a2142c", "7ddf754f-d193-4cc9-b351-99906754a03b", "9ca92552-f23a-41a8-a140-01abaa31c931", "9ff7d317-609b-4c08-bd86-3bc404b77c42" ), bb_key = c( 2427092, 2651108, 6723, NA, NA, 2291152, 2291152, 2430304, 7587934, 1033588, NA ), bb_scientificName = c( "Rana catesbeiana Shaw, 1802", "Polystichum tsus-tsus-tsus (Hook.) Captain", "Lemnaceae", NA, NA, "Ferrissia fragilis (Tryon, 1863)", "Ferrissia fragilis (Tryon, 1863)", "Rana blanfordii Boulenger, 1882", "Python reticulatus Fitzinger, 1826", "Stenelmis williami Schmude", NA ), bb_kingdom = c( "Animalia", "Plantae", "Plantae", NA, NA, "Animalia", "Animalia", "Animalia", "Animalia", "Animalia", NA ), bb_rank = c( "SPECIES", "SPECIES", "FAMILY", NA, NA, "SPECIES", "SPECIES", "SPECIES", "SPECIES", "SPECIES", NA ), bb_taxonomicStatus = c( "SYNONYM", "SYNONYM", "SYNONYM", NA, NA, "SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", "SYNONYM", NA ), bb_acceptedKey = c( 2427091, 4046493, 6979, NA, NA, 9520065, 9520065, 2427008, 9260388, 1033553, NA ), bb_acceptedName = c( "Lithobates dummyus (Batman, 2018)", "Polystichum luctuosum (Kunze) Moore.", "Araceae", NA, NA, "Ferrissia californica (Rowell, 1863)", "Ferrissia californica (Rowell, 1863)", "Hylarana chalconota (Schlegel, 1837)", "Malayopython reticulatus (Schneider, 1801)", "Stenelmis Dufour, 1835", NA ), bb_acceptedKingdom = c( "Animalia", "Plantae", "Plantae", NA, NA, "Animalia", "Animalia", "Animalia", "Animalia", "Animalia", NA ), bb_acceptedRank = c( "SPECIES", "SPECIES", "FAMILY", NA, NA, "SPECIES", "SPECIES", "SPECIES", "SPECIES", "GENUS", NA ), bb_acceptedTaxonomicStatus = c( "ACCEPTED", "ACCEPTED", "ACCEPTED", NA, NA, "ACCEPTED", "ACCEPTED", "ACCEPTED", "ACCEPTED", "ACCEPTED", NA ), verificationKey = c( 2427091, 4046493, 6979, "2805420,2805363", NA, NA, NA, NA, 9260388, NA, 3172099 ), remarks = c( "dummy example 1: bb_acceptedName should be updated.", "dummy example 2: bb_scientificName should be updated.", "dummy example 3: not used anymore. Set outdated = TRUE.", "dummy example 4: multiple keys in verificationKey are allowed.", "dummy example 5: nothing should happen.", "dummy example 6: datasetKey should not be modified. If new taxa come in with same name from other checklsits, they should be added as new rows. Report them as duplicates in duplicates_taxa", "dummy example 7: datasetKey should not be modified. If new taxa come in with same name from other checklsits, they should be added as new rows. Report them as duplicates in duplicates_taxa", "dummy example 8: outdated synonym. Set outdated = TRUE.", "dummy example 9: outdated synonym. outdated is already TRUE. No actions.", "dummy example 10: outdated synonym. Not outdated anymore. Change outdated back to FALSE.", "dummy example 11: outdated unmatched taxa. Set outdated = TRUE." ), verifiedBy = c( "Damiano Oldoni", "Peter Desmet", "Stijn Van Hoey", "Tanja Milotic", NA, NA, NA, NA, "Lien Reyserhove", NA, "Dimitri Brosens" ), dateAdded = as.Date( c( "2018-07-01", "2018-07-01", "2018-07-01", "2018-07-16", "2018-07-16", "2018-07-01", "2018-11-20", "2018-11-29", "2018-12-01", "2018-12-02", "2018-12-03" ) ), outdated = c( FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE ), stringsAsFactors = FALSE ) # output verify_taxa(taxa = my_taxa, verification = my_verification) verify_taxa(taxa = my_taxa) # you can also provide your own column names for one or more required columns: library(dplyr) my_taxa_other_colnames <- rename( my_taxa, checklist = datasetKey, scientific_names = scientificName ) my_verification_other_colnames <- rename( my_verification, backbone_scientific_names = bb_scientificName, backbone_accepted_names = bb_acceptedName, is_outdated = outdated, author_verification = verifiedBy ) # output verify_taxa( taxa = my_taxa_other_colnames, verification = my_verification_other_colnames ) ## End(Not run)
Function to plot bar graph with number of taxa introduced by different
pathways at level 1. Possible breakpoints: taxonomic (kingdoms +
vertebrates/invertebrates) and temporal (lower limit year). Facets can be
added (see argument facet_column
).
visualize_pathways_level1( df, category = NULL, from = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Number of introduced taxa", y_lab = "Pathways" )
visualize_pathways_level1( df, category = NULL, from = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Number of introduced taxa", y_lab = "Pathways" )
df |
A data frame. |
category |
|
from |
|
facet_column |
|
pathways |
character. Vector with pathways level 1 to visualize. The pathways are displayed following the order as in this vector. |
pathway_level1_names |
character. Name of the column of |
taxon_names |
character. Name of the column of |
kingdom_names |
character. Name of the column of |
phylum_names |
character. Name of the column of |
first_observed |
character. Name of the column of |
cbd_standard |
logical. If TRUE the values of pathway level 1 are
checked based on CBD standard as returned by |
title |
|
x_lab |
|
y_lab |
|
A list with three slots:
plot
: ggplot2 object (or egg object if facets are used). NULL
if there
are no data to plot.
data_top_graph
: data.frame (tibble) with data used for the main plot (top
graph) in plot
.
data_facet_graph
: data.frame (tibble) with data used for the faceting
plot in plot
. NULL
is returned if facet_column
is NULL
.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "NA", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), acceptedKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_level1(data) # Animalia visualize_pathways_level1(data, category = "Animalia") # Chordata visualize_pathways_level1(data, category = "Chordata") # facet phylum visualize_pathways_level1( data, category = "Animalia", facet_column = "phylum" ) # facet habitat visualize_pathways_level1(data, facet_column = "habitat") # Only taxa introduced from 1950 visualize_pathways_level1(data, from = 1950) # Only taxa with pathways "corridor" and "escape" visualize_pathways_level1(data, pathways = c("corridor", "escape")) # Add a title visualize_pathways_level1( data, category = "Plantae", from = 1950, title = "Plantae - Pathway level 1 from 1950" ) # Personalize axis labels visualize_pathways_level1(data, x_lab = "Aantal taxa", y_lab = "pathways") ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "NA", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), acceptedKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_level1(data) # Animalia visualize_pathways_level1(data, category = "Animalia") # Chordata visualize_pathways_level1(data, category = "Chordata") # facet phylum visualize_pathways_level1( data, category = "Animalia", facet_column = "phylum" ) # facet habitat visualize_pathways_level1(data, facet_column = "habitat") # Only taxa introduced from 1950 visualize_pathways_level1(data, from = 1950) # Only taxa with pathways "corridor" and "escape" visualize_pathways_level1(data, pathways = c("corridor", "escape")) # Add a title visualize_pathways_level1( data, category = "Plantae", from = 1950, title = "Plantae - Pathway level 1 from 1950" ) # Personalize axis labels visualize_pathways_level1(data, x_lab = "Aantal taxa", y_lab = "pathways") ## End(Not run)
Function to plot bar graph with number of taxa introduced by different pathways at level 2, given a pathway level 1. Possible breakpoints: taxonomic (kingdoms + vertebrates/invertebrates) and temporal (lower limit year).
visualize_pathways_level2( df, chosen_pathway_level1, category = NULL, from = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", pathway_level2_names = "pathway_level2", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Number of introduced taxa", y_lab = "Pathways" )
visualize_pathways_level2( df, chosen_pathway_level1, category = NULL, from = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", pathway_level2_names = "pathway_level2", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Number of introduced taxa", y_lab = "Pathways" )
df |
df. |
chosen_pathway_level1 |
character. A pathway level 1. If CBD standard is
followed (see argument |
category |
|
from |
|
facet_column |
|
pathways |
character. Vector with pathways level 2 to visualize. The pathways are displayed following the order as in this vector. |
pathway_level1_names |
character. Name of the column of |
pathway_level2_names |
character. Name of the column of |
taxon_names |
character. Name of the column of |
kingdom_names |
character. Name of the column of |
phylum_names |
character. Name of the column of |
first_observed |
character. Name of the column of |
cbd_standard |
logical. If |
title |
|
x_lab |
|
y_lab |
|
A list with three slots:
plot
: ggplot2 object (or egg object if facets are used). NULL
if there
are no data to plot.
data_top_graph
: data.frame (tibble) with data used for the main plot (top
graph) in plot
.
data_facet_graph
: data.frame (tibble) with data used for the faceting
plot in plot
. NULL
is returned if facet_column
is NULL
.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_level2(data, chosen_pathway_level1 = "escape") # Animalia visualize_pathways_level2(data, chosen_pathway_level1 = "escape", category = "Animalia" ) # Chordata visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", category = "Chordata" ) # select some pathways only visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", pathways = c("pet", "horticulture") ) # facet phylum visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", category = "Animalia", facet_column = "phylum" ) # facet habitat visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", facet_column = "habitat" ) # Only taxa introduced from 1950 visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", from = 1950 ) # Add a title visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", category = "Plantae", from = 1950, title = "Pathway level 2 (escape): Plantae, from 1950" ) # Personalize axis labels visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", x_lab = "Aantal taxa", y_lab = "pathways" ) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_level2(data, chosen_pathway_level1 = "escape") # Animalia visualize_pathways_level2(data, chosen_pathway_level1 = "escape", category = "Animalia" ) # Chordata visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", category = "Chordata" ) # select some pathways only visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", pathways = c("pet", "horticulture") ) # facet phylum visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", category = "Animalia", facet_column = "phylum" ) # facet habitat visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", facet_column = "habitat" ) # Only taxa introduced from 1950 visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", from = 1950 ) # Add a title visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", category = "Plantae", from = 1950, title = "Pathway level 2 (escape): Plantae, from 1950" ) # Personalize axis labels visualize_pathways_level2( df = data, chosen_pathway_level1 = "escape", x_lab = "Aantal taxa", y_lab = "pathways" ) ## End(Not run)
Function to plot a line graph with number of taxa introduced over time through different CBD pathways level 1. Time expressed in years. Possible breakpoints: taxonomic (kingdoms + vertebrates/invertebrates).
visualize_pathways_year_level1( df, bin = 10, from = 1950, category = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Time period", y_lab = "Number of introduced taxa" )
visualize_pathways_year_level1( df, bin = 10, from = 1950, category = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Time period", y_lab = "Number of introduced taxa" )
df |
A data frame. |
bin |
numeric. Time span in years to use for agggregation. Default:
|
from |
numeric. Year trade-off: taxa introduced before this year are
grouped all together. Default: |
category |
|
facet_column |
|
pathways |
character. Vector with pathways level 1 to visualize. The pathways are displayed following the order as in this vector. |
pathway_level1_names |
character. Name of the column of |
taxon_names |
character. Name of the column of |
kingdom_names |
character. Name of the column of |
phylum_names |
character. Name of the column of |
first_observed |
character. Name of the column of |
cbd_standard |
logical. If |
title |
|
x_lab |
|
y_lab |
|
A list with three slots:
plot
: ggplot2 object (or egg object if facets are used). NULL
if there
are no data to plot.
data_top_graph
: data.frame (tibble) with data used for the main plot (top
graph) in plot
.
data_facet_graph
: data.frame (tibble) with data used for the faceting
plot in plot
. NULL
is returned if facet_column
is NULL
.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_year_level1(data) # Animalia visualize_pathways_year_level1(data, category = "Animalia") # Chordata visualize_pathways_year_level1(data, category = "Chordata") # Group by 20 years visualize_pathways_year_level1(data, bin = 20) # Group taxa introudced before 1970 alltogether visualize_pathways_year_level1(data, from = 1970) # facet locality visualize_pathways_year_level1( data, category = "Not Chordata", facet_column = "locality" ) # facet habitat visualize_pathways_year_level1(data, facet_column = "habitat") # Only taxa with pathways "corridor" and "escape" visualize_pathways_year_level1(data, pathways = c("corridor", "escape")) # Add a title visualize_pathways_year_level1( data, category = "Plantae", from = 1950, title = "Pathway level 1: Plantae" ) # Personalize axis labels visualize_pathways_year_level1( data, x_lab = "Jaar", y_lab = "Aantal geïntroduceerde taxa" ) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_year_level1(data) # Animalia visualize_pathways_year_level1(data, category = "Animalia") # Chordata visualize_pathways_year_level1(data, category = "Chordata") # Group by 20 years visualize_pathways_year_level1(data, bin = 20) # Group taxa introudced before 1970 alltogether visualize_pathways_year_level1(data, from = 1970) # facet locality visualize_pathways_year_level1( data, category = "Not Chordata", facet_column = "locality" ) # facet habitat visualize_pathways_year_level1(data, facet_column = "habitat") # Only taxa with pathways "corridor" and "escape" visualize_pathways_year_level1(data, pathways = c("corridor", "escape")) # Add a title visualize_pathways_year_level1( data, category = "Plantae", from = 1950, title = "Pathway level 1: Plantae" ) # Personalize axis labels visualize_pathways_year_level1( data, x_lab = "Jaar", y_lab = "Aantal geïntroduceerde taxa" ) ## End(Not run)
Function to plot a line graph with number of taxa introduced over time through different CBD pathways level 2 for a specific CBD pathway level 1. Time expressed in years. Possible breakpoints: taxonomic (kingdoms + vertebrates/invertebrates).
visualize_pathways_year_level2( df, chosen_pathway_level1, bin = 10, from = 1950, category = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", pathway_level2_names = "pathway_level2", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Time period", y_lab = "Number of introduced taxa" )
visualize_pathways_year_level2( df, chosen_pathway_level1, bin = 10, from = 1950, category = NULL, facet_column = NULL, pathways = NULL, pathway_level1_names = "pathway_level1", pathway_level2_names = "pathway_level2", taxon_names = "key", kingdom_names = "kingdom", phylum_names = "phylum", first_observed = "first_observed", cbd_standard = TRUE, title = NULL, x_lab = "Time period", y_lab = "Number of introduced taxa" )
df |
A data frame. |
chosen_pathway_level1 |
character. Selected pathway level 1. |
bin |
numeric. Time span in years to use for agggregation. Default:
|
from |
numeric. Year trade-off: taxa introduced before this year are
grouped all together. Default: |
category |
|
facet_column |
|
pathways |
character. Vector with pathways level 1 to visualize. The pathways are displayed following the order as in this vector. |
pathway_level1_names |
character. Name of the column of |
pathway_level2_names |
character. Name of the column of |
taxon_names |
character. Name of the column of |
kingdom_names |
character. Name of the column of |
phylum_names |
character. Name of the column of |
first_observed |
character. Name of the column of |
cbd_standard |
logical. If |
title |
|
x_lab |
|
y_lab |
|
A list with three slots:
plot
: ggplot2 object (or egg object if facets are used). NULL
if there
are no data to plot.
data_top_graph
: data.frame (tibble) with data used for the main plot (top
graph) in plot
.
data_facet_graph
: data.frame (tibble) with data used for the faceting
plot in plot
. NULL
is returned if facet_column
is NULL
.
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape" ) # Animalia visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Animalia" ) # Chordata visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Chordata" ) # Group by 20 years visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", bin = 20 ) # Group taxa introudced before 1970 alltogether visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", from = 1970 ) # facet locality visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Not Chordata", facet_column = "locality" ) # facet habitat visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", facet_column = "habitat" ) # Only taxa with pathways "horticulture" and "pet" visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", pathways = c("horticulture", "pet") ) # Add a title visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Plantae", from = 1950, title = "Plantae - Pathway level 1" ) # Personalize axis labels visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", x_lab = "Jaar", y_lab = "Aantal geintroduceerde taxa" ) ## End(Not run)
## Not run: library(readr) datafile <- paste0( "https://raw.githubusercontent.com/trias-project/indicators/master/data/", "interim/data_input_checklist_indicators.tsv" ) data <- read_tsv(datafile, na = "", col_types = cols( .default = col_character(), key = col_double(), nubKey = col_double(), speciesKey = col_double(), first_observed = col_double(), last_observed = col_double() ) ) # All taxa visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape" ) # Animalia visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Animalia" ) # Chordata visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Chordata" ) # Group by 20 years visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", bin = 20 ) # Group taxa introudced before 1970 alltogether visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", from = 1970 ) # facet locality visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Not Chordata", facet_column = "locality" ) # facet habitat visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", facet_column = "habitat" ) # Only taxa with pathways "horticulture" and "pet" visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", pathways = c("horticulture", "pet") ) # Add a title visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", category = "Plantae", from = 1950, title = "Plantae - Pathway level 1" ) # Personalize axis labels visualize_pathways_year_level2( data, chosen_pathway_level1 = "escape", x_lab = "Jaar", y_lab = "Aantal geintroduceerde taxa" ) ## End(Not run)