General note: the below vignette contains frozen output of 2 Oct 2019. This makes it possible to build the package with vignettes without access to the Watina database.
Let’s have a look at how chemical data, retrieved from Watina, look like. The below example requests available hydrochemical data since 2010 from locations in the area ‘Zwarte Beek’:
watina <- connect_watina()
mydata <-
get_locs(watina, area_codes = "ZWA") %>%
get_chem(watina, "1/1/2010")
mydata %>%
count
#> # Source: lazy query [?? x 1]
#> # Database: Microsoft SQL Server
#> n
#> <int>
#> 1 1916
class(mydata)
#> [1] "tbl_Microsoft SQL Server" "tbl_dbi"
#> [3] "tbl_sql" "tbl_lazy"
#> [5] "tbl"
mydata %>%
head(15) %>%
collect %>%
as.data.frame
#> loc_code date lab_project_id lab_sample_id chem_variable value
#> 1 ZWAP033 2011-04-14 0 10431 Ca 19.690
#> 2 ZWAP033 2011-04-14 0 10431 Cl 19.582
#> 3 ZWAP033 2011-04-14 0 10431 CondF 425.000
#> 4 ZWAP033 2011-04-14 0 10431 CondL 372.000
#> 5 ZWAP033 2011-04-14 0 10431 Fe 60.809
#> 6 ZWAP033 2011-04-14 0 10431 HCO3 25.169
#> 7 ZWAP033 2011-04-14 0 10431 K 2.530
#> 8 ZWAP033 2011-04-14 0 10431 Mg 7.000
#> 9 ZWAP033 2011-04-14 0 10431 Na 5.330
#> 10 ZWAP033 2011-04-14 0 10431 N-NH4 0.318
#> 11 ZWAP033 2011-04-14 0 10431 N-NO2 0.015
#> 12 ZWAP033 2011-04-14 0 10431 N-NO3 0.041
#> 13 ZWAP033 2011-04-14 0 10431 pHF 6.297
#> 14 ZWAP033 2011-04-14 0 10431 pHL 5.830
#> 15 ZWAP033 2011-04-14 0 10431 P-PO4 0.016
#> unit below_loq loq elneutr
#> 1 mg/l NA -99 0.610484
#> 2 mg/l NA -99 0.610484
#> 3 µS/cm NA -99 0.610484
#> 4 µS/cm NA -99 0.610484
#> 5 mg/l NA -99 0.610484
#> 6 mg/l NA -99 0.610484
#> 7 mg/l NA -99 0.610484
#> 8 mg/l NA -99 0.610484
#> 9 mg/l NA -99 0.610484
#> 10 mg/l NA -99 0.610484
#> 11 mg/l NA -99 0.610484
#> 12 mg/l NA -99 0.610484
#> 13 <NA> NA -99 0.610484
#> 14 <NA> NA -99 0.610484
#> 15 mg/l NA -99 0.610484
The first and last year of the dataset are:
mydata %>%
pull(date) %>%
lubridate::year(.) %>%
(function(x) c(firstyear = min(x), lastyear = max(x)))
#> firstyear lastyear
#> 2011 2019
Let’s suppose that we now want to select locations for which:
To express criteria, we need the numerical value of a date:
We can store specific conditions in a dataframe; the available
statistics are explained by the documentation of
eval_chem()
:
conditions_df <-
tribble(
~chem_variable, ~statistic, ~criterion, ~direction,
"N-NO3", "nrdates", 2, "min",
"P-PO4", "nrdates", 2, "min",
"P-PO4", "firstdate", 16071, "max",
"P-PO4", "timespan_years", 5, "min"
)
conditions_df %>%
kable
chem_variable | statistic | criterion | direction |
---|---|---|---|
N-NO3 | nrdates | 2 | min |
P-PO4 | nrdates | 2 | min |
P-PO4 | firstdate | 16071 | max |
P-PO4 | timespan_years | 5 | min |
You can also separately limit the chemical variables to be evaluated
with the chem_var
argument in the
selectlocs_chem()
function:
myresult <-
mydata %>%
selectlocs_chem(data_type = "data",
chem_var = c("N-NO3", "P-PO4"),
conditions = conditions_df)
myresult
#> # A tibble: 18 x 1
#> loc_code
#> <chr>
#> 1 ZWAP034
#> 2 ZWAP041
#> 3 ZWAP042
#> 4 ZWAP051
#> 5 ZWAP063
#> 6 ZWAP064
#> 7 ZWAP067
#> 8 ZWAP129
#> 9 ZWAP165
#> 10 ZWAP170
#> 11 ZWAP196
#> 12 ZWAP205
#> 13 ZWAP208
#> 14 ZWAP214
#> 15 ZWAP215
#> 16 ZWAP216
#> 17 ZWAP220
#> 18 ZWAP221
With the argument list = TRUE
you can also obtain
intermediate test results. For further information, see the
documentation of the selectlocs_chem()
function.
The get_chem()
function in the above example retrieved
hydrochemical data, from given locations, as a lazy object (unless
collect = TRUE
). A timeframe is used to filter
hydrochemical data in Watina (with arguments startdate
and
enddate
). By default, the enddate
argument is
set as today. Here we only provide the
startdate
:
mylocs <- get_locs(watina, area_codes = "ZWA")
mylocs %>% get_chem(watina, "1/1/2017")
#> # Source: lazy query [?? x 10]
#> # Database: Microsoft SQL Server
#> # Ordered by: area_code, loc_code, obswell_rank, area_code, loc_code,
#> # loc_code, date, chem_variable
#> loc_code date lab_project_id lab_sample_id chem_variable value
#> <chr> <date> <chr> <chr> <chr> <dbl>
#> 1 ZWAP034 2018-10-29 0 40121 Al 0.05
#> 2 ZWAP034 2018-10-29 0 40121 Ca 4.24
#> 3 ZWAP034 2018-10-29 0 40121 Cl 14.4
#> 4 ZWAP034 2018-10-29 0 40121 CondF 135
#> 5 ZWAP034 2018-10-29 0 40121 CondL 120.
#> 6 ZWAP034 2018-10-29 0 40121 Fe 19.9
#> 7 ZWAP034 2018-10-29 0 40121 HCO3 5.97
#> 8 ZWAP034 2018-10-29 0 40121 K 1.98
#> 9 ZWAP034 2018-10-29 0 40121 Mg 1.36
#> 10 ZWAP034 2018-10-29 0 40121 Mn 0.05
#> # … with more rows, and 4 more variables: unit <chr>, below_loq <lgl>,
#> # loq <dbl>, elneutr <dbl>
Retrieving the data locally:
mylocs %>% get_chem(watina, "1/1/2017", collect = TRUE)
#> # A tibble: 608 x 10
#> loc_code date lab_project_id lab_sample_id chem_variable value
#> <chr> <date> <chr> <chr> <chr> <dbl>
#> 1 ZWAP034 2018-10-29 0 40121 Al 0.05
#> 2 ZWAP034 2018-10-29 0 40121 Ca 4.24
#> 3 ZWAP034 2018-10-29 0 40121 Cl 14.4
#> 4 ZWAP034 2018-10-29 0 40121 CondF 135
#> 5 ZWAP034 2018-10-29 0 40121 CondL 120.
#> 6 ZWAP034 2018-10-29 0 40121 Fe 19.9
#> 7 ZWAP034 2018-10-29 0 40121 HCO3 5.97
#> 8 ZWAP034 2018-10-29 0 40121 K 1.98
#> 9 ZWAP034 2018-10-29 0 40121 Mg 1.36
#> 10 ZWAP034 2018-10-29 0 40121 Mn 0.05
#> # … with 598 more rows, and 4 more variables: unit <chr>,
#> # below_loq <lgl>, loq <dbl>, elneutr <dbl>
Note below, the different number of results when using non-default
settings for filtering according to electroneutrality! The
default range of electroneutrality is from -0.1 to 0.1 (argument
en_range
).
mylocs %>% get_chem(watina, "1/1/2017") %>% count
#> # Source: lazy query [?? x 1]
#> # Database: Microsoft SQL Server
#> n
#> <int>
#> 1 608
mylocs %>% get_chem(watina, "1/1/2017", en_exclude_na = TRUE) %>% count
#> # Source: lazy query [?? x 1]
#> # Database: Microsoft SQL Server
#> n
#> <int>
#> 1 602
mylocs %>% get_chem(watina, "1/1/2017", en_range = c(-1, 1)) %>% count
#> # Source: lazy query [?? x 1]
#> # Database: Microsoft SQL Server
#> n
#> <int>
#> 1 674
With en_exclude_na = TRUE
, samples for which no
electroneutrality could be calculated are discarded!
By default, all measurements from water samples with a high iron /
conductivity ratio are returned (hence, in these cases the
en_range
and en_exclude_na
arguments are
ignored). This is controlled by the en_fecond_threshold
argument. If you want the en_range
and
en_exclude_na
arguments to take effect also in these
relatively iron-rich water samples, set
en_fecond_threshold = NA
:
mylocs %>% get_chem(watina, "1/1/2017", en_fecond_threshold = NA) %>% count
#> # Source: lazy query [?? x 1]
#> # Database: Microsoft SQL Server
#> n
#> <int>
#> 1 524
Equivalence concentrations instead of mass concentrations can be
returned with conc_type = "eq"
:
mylocs %>% get_chem(watina, "1/1/2017", conc_type = "eq")
#> # Source: lazy query [?? x 10]
#> # Database: Microsoft SQL Server
#> # Ordered by: area_code, loc_code, obswell_rank, area_code, loc_code,
#> # loc_code, date, chem_variable
#> loc_code date lab_project_id lab_sample_id chem_variable value
#> <chr> <date> <chr> <chr> <chr> <dbl>
#> 1 ZWAP034 2018-10-29 0 40121 Al 5.00e-2
#> 2 ZWAP034 2018-10-29 0 40121 Ca 2.12e-1
#> 3 ZWAP034 2018-10-29 0 40121 Cl 4.07e-1
#> 4 ZWAP034 2018-10-29 0 40121 CondF 1.35e+2
#> 5 ZWAP034 2018-10-29 0 40121 CondL 1.20e+2
#> 6 ZWAP034 2018-10-29 0 40121 Fe 7.14e-1
#> 7 ZWAP034 2018-10-29 0 40121 HCO3 9.78e-2
#> 8 ZWAP034 2018-10-29 0 40121 K 5.07e-2
#> 9 ZWAP034 2018-10-29 0 40121 Mg 1.12e-1
#> 10 ZWAP034 2018-10-29 0 40121 Mn 5.00e-2
#> # … with more rows, and 4 more variables: unit <chr>, below_loq <lgl>,
#> # loq <dbl>, elneutr <dbl>
Joining results to mylocs
:
mylocs %>%
get_chem(watina, "1/1/2017") %>%
left_join(mylocs %>%
select(-loc_wid),
.) %>%
collect
#> Joining, by = "loc_code"
#> # A tibble: 765 x 20
#> loc_code area_code area_name x y loc_validitycode loc_validity
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
#> 1 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 2 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 3 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 4 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 5 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 6 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 7 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 8 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 9 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> 10 ZWAP141 ZWA Zwarte B… 216785 198435 VLD Gevalideerd
#> # … with 755 more rows, and 13 more variables: loc_typecode <chr>,
#> # loc_typename <chr>, filterdepth <dbl>, soilsurf_ost <dbl>,
#> # date <date>, lab_project_id <chr>, lab_sample_id <chr>,
#> # chem_variable <chr>, value <dbl>, unit <chr>, below_loq <lgl>,
#> # loq <dbl>, elneutr <dbl>
You can characterize the locations of a dataset of hydrochemical
data, using the eval_chem()
function. You are invited to
read its documentation and try its examples!
The selectlocs_chem()
function, of which we saw a
demonstration above, calls eval_chem()
by itself.
Alternatively the user can provide the result of those functions as
input to selectlocs_chem()
.