Package: multimput 0.2.14
multimput: Using Multiple Imputation to Address Missing Data
Accompanying package for the paper: Working with population totals in the presence of missing data comparing imputation methods in terms of bias and precision. Published in 2017 in the Journal of Ornithology volume 158 page 603–615 (<doi:10.1007/s10336-016-1404-9>).
Authors:
multimput_0.2.14.tar.gz
multimput_0.2.13.zip(r-4.5)multimput_0.2.14.zip(r-4.4)multimput_0.2.13.zip(r-4.3)
multimput_0.2.14.tgz(r-4.4-any)multimput_0.2.14.tgz(r-4.3-any)
multimput_0.2.14.tar.gz(r-4.5-noble)multimput_0.2.14.tar.gz(r-4.4-noble)
multimput_0.2.13.tgz(r-4.4-emscripten)multimput_0.2.13.tgz(r-4.3-emscripten)
multimput.pdf |multimput.html✨
multimput/json (API)
# Install 'multimput' in R: |
install.packages('multimput', repos = c('https://inbo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/inbo/multimput/issues
Pkgdown:https://inbo.github.io
- waterfowl - The observation pattern in the Flemish waterfowl dataset
Last updated 3 months agofrom:12d11eff38. Checks:OK: 4 ERROR: 2 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 03 2024 |
R-4.5-win | ERROR | Sep 25 2024 |
R-4.5-linux | OK | Dec 03 2024 |
R-4.4-win | OK | Dec 03 2024 |
R-4.4-mac | OK | Dec 03 2024 |
R-4.3-win | WARNING | Sep 25 2024 |
R-4.3-mac | ERROR | Dec 05 2024 |
Exports:aggregate_imputegenerate_datahurdle_imputeimputemissing_at_randommissing_current_countmissing_observedmissing_volunteermodel_impute
Dependencies:assertthatbootclassclassIntclicpp11DBIdigestdplyre1071fansifmeshergenericsglueINLAKernSmoothlatticelifecyclelme4magrittrMASSMatrixMatrixModelsminqamvtnormnlmenloptrpillarpkgconfigproxypurrrR6RcppRcppEigenrlangs2sfspstringistringrtibbletidyrtidyselectunitsutf8vctrswithrwk
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Aggregate an imputed dataset | aggregate_impute aggregate_impute,aggregatedImputed-method aggregate_impute,ANY-method aggregate_impute,rawImputed-method |
The 'aggregatedImputed' class Holds an aggregated imputation data set | aggregatedImputed-class |
Generate simulated data | generate_data |
Combine two models into a hurdle model | hurdle_impute |
Impute a dataset | impute impute,ANY-method impute,glmerMod-method impute,lm-method impute,maybeInla-method |
The 'maybeInla' class | maybeInla-class |
Generate missing data at random | missing_at_random |
Generate missing data depending on the counts | missing_current_count |
Generate missing data based on the observed patterns in the real dataset. | missing_observed |
Generate missing data mimicking choices made by volunteers. | missing_volunteer |
Model an imputed dataset | model_impute model_impute,aggregatedImputed-method model_impute,ANY-method |
The 'rawImputed' class Holds a dataset and imputed values | rawImputed-class |
The observation pattern in the Flemish waterfowl dataset | waterfowl |